cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276968 Odd integers n such that 2^n == 2^5 (mod n).

This page as a plain text file.
%I A276968 #16 Oct 12 2018 14:57:36
%S A276968 1,3,5,25,65,85,145,165,185,205,221,265,305,365,445,465,485,505,545,
%T A276968 565,685,745,785,825,865,905,965,985,1025,1085,1145,1165,1205,1285,
%U A276968 1345,1385,1405,1465,1565,1585,1685,1705,1745,1765,1865,1925,1945,1985,2005,2045,2105,2165,2245,2285,2305,2325
%N A276968 Odd integers n such that 2^n == 2^5 (mod n).
%C A276968 Also, integers n such that 2^(n-5) == 1 (mod n).
%C A276968 Contains A050993 as a subsequence.
%C A276968 For all m, 2^A128122(m)-1 belongs to this sequence.
%H A276968 Seiichi Manyama, <a href="/A276968/b276968.txt">Table of n, a(n) for n = 1..10000</a>
%t A276968 m = 2^5; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &],
%t A276968 Select[Range[m + 1, 10^3, 2], PowerMod[2, #, #] == m &]] (* _Robert Price_, Oct 12 2018 *)
%Y A276968 The odd terms of A015925.
%Y A276968 Odd integers n such that 2^n == 2^k (mod n): A176997 (k=1), A173572 (k=2), A276967 (k=3), A033984 (k=4), this sequence (k=5), A215610 (k=6), A276969 (k=7), A215611 (k=8), A276970 (k=9), A215612 (k=10), A276971 (k=11), A215613 (k=12).
%Y A276968 Cf. A050993, A128122.
%K A276968 nonn,easy
%O A276968 1,2
%A A276968 _Max Alekseyev_, Sep 22 2016