cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276974 Number T(n,k) of permutations of [n] where the minimal distance between elements of the same cycle equals k (k=n for the identity permutation in S_n); triangle T(n,k), n>=0, 0<=k<=n, read by rows.

This page as a plain text file.
%I A276974 #17 Oct 28 2020 10:18:56
%S A276974 1,0,1,0,1,1,0,4,1,1,0,19,3,1,1,0,103,12,3,1,1,0,651,54,10,3,1,1,0,
%T A276974 4702,281,42,10,3,1,1,0,38413,1652,203,37,10,3,1,1,0,350559,11017,
%U A276974 1086,166,37,10,3,1,1,0,3539511,81665,6564,857,151,37,10,3,1,1,0,39196758,669948,44265,4900,726,151,37,10,3,1,1
%N A276974 Number T(n,k) of permutations of [n] where the minimal distance between elements of the same cycle equals k (k=n for the identity permutation in S_n); triangle T(n,k), n>=0, 0<=k<=n, read by rows.
%H A276974 Alois P. Heinz, <a href="/A276974/b276974.txt">Rows n = 0..12, flattened</a>
%H A276974 Per Alexandersson et al., <a href="https://mathoverflow.net/questions/168885">d-regular partitions and permutations</a>, MathOverflow, 2014
%e A276974 T(3,1) = 4: (1,2,3), (1,3,2), (1)(2,3), (1,2)(3).
%e A276974 T(3,2) = 1: (1,3)(2).
%e A276974 T(3,3) = 1: (1)(2)(3).
%e A276974 Triangle T(n,k) begins:
%e A276974   1;
%e A276974   0,       1;
%e A276974   0,       1,     1;
%e A276974   0,       4,     1,    1;
%e A276974   0,      19,     3,    1,   1;
%e A276974   0,     103,    12,    3,   1,   1;
%e A276974   0,     651,    54,   10,   3,   1,  1;
%e A276974   0,    4702,   281,   42,  10,   3,  1,  1;
%e A276974   0,   38413,  1652,  203,  37,  10,  3,  1, 1;
%e A276974   0,  350559, 11017, 1086, 166,  37, 10,  3, 1, 1;
%e A276974   0, 3539511, 81665, 6564, 857, 151, 37, 10, 3, 1, 1;
%e A276974   ...
%Y A276974 Columns k=0-1 give: A000007, A276975.
%Y A276974 Row sums give A000142.
%Y A276974 T(2n,n) = A138378(n) = A005493(n-1) for n>0.
%Y A276974 Cf. A239145, A263757, A277031.
%K A276974 nonn,tabl
%O A276974 0,8
%A A276974 _Alois P. Heinz_, Sep 23 2016