cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276981 Irregular triangle T(n,k) read by rows of residue classes of powers of 10 modulo n.

This page as a plain text file.
%I A276981 #14 Mar 25 2022 14:05:32
%S A276981 0,1,0,1,1,2,0,1,0,1,4,1,3,2,6,4,5,1,2,4,0,1,1,0,1,10,1,10,4,1,10,9,
%T A276981 12,3,4,1,10,2,6,4,12,8,1,10,1,10,4,8,0,1,10,15,14,4,6,9,5,16,7,2,3,
%U A276981 13,11,8,12,1,10,1,10,5,12,6,3,11,15,17,18,9,14,7,13,16,8,4,2
%N A276981 Irregular triangle T(n,k) read by rows of residue classes of powers of 10 modulo n.
%C A276981 The length of the nonperiodic part of the residue class values is given in A051628, the length of the periodic part is given in A007732.
%C A276981 These residue class values are useful to check the divisibility of a number by the divisor n simply by calculating the weighted sum of digits. For example, the number 86415 is divisible by 7, because the weighted sum of digits 5*1 + 1*3 + 4*2 + 6*6 + 8*4 = 84 is divisible by 7. The used weights are the residue class values for n = 7: 1, 3, 2, 6, 4, 5, ... for ones, tens, hundreds, ...
%H A276981 Alois P. Heinz, <a href="/A276981/b276981.txt">Rows n = 1..800, flattened</a>
%e A276981 T(n,k), 1 <= k <= A051628(n) + A007732(n), starts with
%e A276981 n = 1:  0
%e A276981 n = 2:  1, 0
%e A276981 n = 3:  1
%e A276981 n = 4:  1, 2, 0
%e A276981 n = 5:  1, 0
%e A276981 n = 6:  1, 4
%e A276981 n = 7:  1, 3, 2, 6, 4, 5
%e A276981 n = 8:  1, 2, 4, 0
%e A276981 n = 9:  1
%e A276981 n = 10: 1, 0
%e A276981 n = 11: 1, 10
%e A276981 n = 12: 1, 10, 4
%e A276981 etc.
%p A276981 a:=proc(n)
%p A276981   local R,N,P,i;
%p A276981   R:=[seq(10^k mod n,k=0..n)]; # residue class
%p A276981   N:=[]; # nonperiodic part
%p A276981   P:=[]; # periodic part
%p A276981   for i from 1 to nops(R) do
%p A276981     member(R[i],R,'m');
%p A276981     if m<i then
%p A276981       if R[i]=1 then
%p A276981         P:=R[1..i-1];
%p A276981       else
%p A276981         N:=R[1..m-1];
%p A276981         P:=R[m..i-1];
%p A276981       fi;
%p A276981       break;
%p A276981     fi;
%p A276981   od;
%p A276981   return(op(N),op(P));
%p A276981 end:
%p A276981 seq(a(n),n=1..19);
%Y A276981 Cf. A007732, A051628.
%K A276981 nonn,base,tabf
%O A276981 1,6
%A A276981 _Martin Renner_, Apr 11 2017