A276994 Decimal expansion of the Klarner-Rivest polyomino constant.
2, 3, 0, 9, 1, 3, 8, 5, 9, 3, 3, 3, 0, 4, 9, 4, 7, 3, 1, 0, 9, 8, 7, 2, 0, 3, 0, 5, 0, 1, 7, 2, 1, 2, 5, 3, 1, 9, 1, 1, 8, 1, 4, 4, 7, 2, 5, 8, 1, 6, 2, 8, 4, 0, 1, 6, 9, 4, 4, 0, 2, 9, 0, 0, 2, 8, 4, 4, 5, 6, 4, 4, 0, 7, 4, 8, 3, 1, 6, 8, 4, 2, 7, 1, 7, 2, 8, 1, 6, 1, 5, 7, 7, 4, 4, 1, 2, 1, 7, 4, 3, 7, 4, 6, 1
Offset: 1
Examples
2.309138593330494731098720305017212531911814472581628401694402900284456440748...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.19 (Klarner's polyomino constant), p. 380.
Links
- E. A. Bender, Convex n-ominoes, Discrete Math., 8 (1974), 219-226.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009, p. 662.
- D. A. Klarner and R. L. Rivest, Asymptotic bounds for the number of convex n-ominoes, Discrete Math., 8 (1974), 31-40.
Crossrefs
Cf. A006958.
Programs
-
Mathematica
1/z/.FindRoot[Sum[(-1)^n * z^(n*(n+1)/2) / QPochhammer[z, z, n]^2, {n, 0, 1000}], {z, 2/5}, WorkingPrecision -> 120]
Comments