cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276994 Decimal expansion of the Klarner-Rivest polyomino constant.

Original entry on oeis.org

2, 3, 0, 9, 1, 3, 8, 5, 9, 3, 3, 3, 0, 4, 9, 4, 7, 3, 1, 0, 9, 8, 7, 2, 0, 3, 0, 5, 0, 1, 7, 2, 1, 2, 5, 3, 1, 9, 1, 1, 8, 1, 4, 4, 7, 2, 5, 8, 1, 6, 2, 8, 4, 0, 1, 6, 9, 4, 4, 0, 2, 9, 0, 0, 2, 8, 4, 4, 5, 6, 4, 4, 0, 7, 4, 8, 3, 1, 6, 8, 4, 2, 7, 1, 7, 2, 8, 1, 6, 1, 5, 7, 7, 4, 4, 1, 2, 1, 7, 4, 3, 7, 4, 6, 1
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 27 2016

Keywords

Comments

Analytic Combinatorics (Flajolet and Sedgewick, 2009, p. 662) has a wrong value of this constant (2.309138593331230...).

Examples

			2.309138593330494731098720305017212531911814472581628401694402900284456440748...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.19 (Klarner's polyomino constant), p. 380.

Crossrefs

Cf. A006958.

Programs

  • Mathematica
    1/z/.FindRoot[Sum[(-1)^n * z^(n*(n+1)/2) / QPochhammer[z, z, n]^2, {n, 0, 1000}], {z, 2/5}, WorkingPrecision -> 120]

Formula

Equals lim n -> infinity A006958(n)^(1/n).
1/A276994 = 0.4330619231293906645846169654189837... is the smallest positive root of the equation Sum_{n>=0} ((-1)^n * z^(n*(n+1)/2) / (Product_{k=1..n} 1-z^k)^2) = 0.