cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276996 Numerators of coefficients of polynomials arising from applying the complete Bell polynomials to k!B_k(x)/(k*(k-1)) with B_k(x) the Bernoulli polynomials.

This page as a plain text file.
%I A276996 #22 Sep 09 2018 11:15:54
%S A276996 1,0,0,1,-1,1,0,1,-3,1,1,-1,6,-10,5,0,-1,-15,95,-40,16,239,-1,13,-85,
%T A276996 240,-237,79,0,403,21,385,-1575,3577,-2947,421,-46409,-239,3841,175,
%U A276996 861,-8036,45458,-10692,2673,0,-82451,-2657,56177,1638,19488,-85260,139656,-86472,19216
%N A276996 Numerators of coefficients of polynomials arising from applying the complete Bell polynomials to k!B_k(x)/(k*(k-1)) with B_k(x) the Bernoulli polynomials.
%C A276996 The polynomials appear in certain asymptotic series for the Gamma function, cf. for example A181855/A181856 and A277000/A277001.
%H A276996 W. Wang, <a href="http://dx.doi.org/10.1016/j.jnt.2015.12.016">Unified approaches to the approximations of the gamma function</a>, J. Number Theory (2016).
%F A276996 T(n,k) = Numerator([x^k] p_n(x)) where p_n(x) = Y_{n}(z_1, z_2, z_3,..., z_n) are the complete Bell polynomials evaluated at z_1 = 0 and z_k = (k-2)!*B_k(x) for k>1 and B_k(x) the Bernoulli polynomials.
%e A276996 Polynomials start:
%e A276996 p_0(x) = 1;
%e A276996 p_1(x) = 0;
%e A276996 p_2(x) = 1/6 + -x + x^2;
%e A276996 p_3(x) = (1/2)*x + -(3/2)*x^2 + x^3;
%e A276996 p_4(x) = 1/60 + -x + 6*x^2 + -10*x^3 + 5*x^4;
%e A276996 p_5(x) = -(1/6)*x + -(15/2)*x^2 + (95/3)*x^3 + -40*x^4 + 16*x^5;
%e A276996 p_6(x) = 239/504 + -(1/4)*x + (13/4)*x^2 + -85*x^3 + 240*x^4 + -237*x^5 + 79*x^6;
%e A276996 Triangle starts:
%e A276996 1;
%e A276996 0,   0;
%e A276996 1,  -1,   1;
%e A276996 0,   1,  -3,   1;
%e A276996 1,  -1,   6, -10,  5;
%e A276996 0,  -1, -15,  95, -40,   16;
%e A276996 239,-1,  13, -85, 240, -237, 79;
%p A276996 A276996_row := proc(n) local p;
%p A276996 p := (n,x) -> CompleteBellB(n,0,seq((k-2)!*bernoulli(k,x),k=2..n)):
%p A276996 seq(numer(coeff(p(n,x),x,k)), k=0..n) end:
%p A276996 seq(A276996_row(n), n=0..9);
%p A276996 # Recurrence for the polynomials:
%p A276996 A276996_poly := proc(n,x) option remember; local z;
%p A276996 if n = 0 then return 1 fi; z := proc(k) option remember;
%p A276996 if k=1 then 0 else (k-2)!*bernoulli(k,x) fi end;
%p A276996 expand(add(binomial(n-1,j)*z(n-j)*A276996_poly(j,x),j=0..n-1)) end:
%p A276996 for n from 0 to 5 do sort(A276996_poly(n,x)) od;
%t A276996 CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}];
%t A276996 p[n_, x_] := CompleteBellB[n, Join[{0}, Table[(k-2)! BernoulliB[k, x], {k, 2, n}]]];
%t A276996 row[0] = {1}; row[1] = {0, 0}; row[n_] := CoefficientList[p[n, x], x] // Numerator;
%t A276996 Table[row[n], {n, 0, 9}] // Flatten (* _Jean-François Alcover_, Sep 09 2018 *)
%Y A276996 Cf. A276997 (denominators); T(2n,0) = A181855(n), T(n,n) = A203852(n).
%Y A276996 Cf. A276998.
%K A276996 sign,frac,tabl
%O A276996 0,9
%A A276996 _Peter Luschny_, Oct 01 2016