cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276997 Denominators of coefficients of polynomials arising from applying the complete Bell polynomials to k!B_k(x)/(k*(k-1)) with B_k(x) the Bernoulli polynomials.

This page as a plain text file.
%I A276997 #17 Sep 09 2018 11:15:33
%S A276997 1,1,1,6,1,1,1,2,2,1,60,1,1,1,1,1,6,2,3,1,1,504,4,4,1,1,1,1,1,24,8,12,
%T A276997 2,2,2,1,2160,18,9,3,2,1,3,1,1,1,60,4,6,1,5,1,1,1,1,3168,48,16,6,3,2,
%U A276997 2,1,2,1,1,1,288,32,144,12,12,4,2,1,6,2,1
%N A276997 Denominators of coefficients of polynomials arising from applying the complete Bell polynomials to k!B_k(x)/(k*(k-1)) with B_k(x) the Bernoulli polynomials.
%C A276997 For formulas and references see A276996.
%C A276997 Compare T(n,0) with A220411.
%e A276997 Triangle starts:
%e A276997      1;
%e A276997      1,  1;
%e A276997      6,  1,  1;
%e A276997      1,  2,  2,  1;
%e A276997     60,  1,  1,  1, 1;
%e A276997      1,  6,  2,  3, 1, 1;
%e A276997    504,  4,  4,  1, 1, 1, 1;
%e A276997      1, 24,  8, 12, 2, 2, 2, 1;
%e A276997   2160, 18,  9,  3, 2, 1, 3, 1, 1;
%p A276997 A276997_row := proc(n) local p;
%p A276997 p := (n,x) -> CompleteBellB(n,0,seq((k-2)!*bernoulli(k,x),k=2..n)):
%p A276997 seq(denom(coeff(p(n,x),x,k)), k=0..n) end:
%p A276997 seq(A276997_row(n), n=0..11);
%t A276997 CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}];
%t A276997 p[n_, x_] := CompleteBellB[n, Join[{0}, Table[(k-2)! BernoulliB[k, x], {k, 2, n}]]];
%t A276997 row[0] = {1}; row[1] = {1, 1}; row[n_] := CoefficientList[p[n, x], x] // Denominator;
%t A276997 Table[row[n], {n, 0, 11}] // Flatten (* _Jean-François Alcover_, Sep 09 2018 *)
%Y A276997 Cf. A276996 (numerators), A220411.
%K A276997 nonn,frac,tabl
%O A276997 0,4
%A A276997 _Peter Luschny_, Oct 01 2016