cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277000 Numerators of an asymptotic series for the Gamma function (even power series).

This page as a plain text file.
%I A277000 #30 Mar 07 2025 11:40:27
%S A277000 1,-1,19,-2561,874831,-319094777,47095708213409,-751163826506551,
%T A277000 281559662236405100437,-49061598325832137241324057,
%U A277000 5012066724315488368700829665081,-26602063280041700132088988446735433,40762630349420684160007591156102493590477
%N A277000 Numerators of an asymptotic series for the Gamma function (even power series).
%C A277000 Let y = x+1/2 then Gamma(x+1) ~ sqrt(2*Pi)*((y/E)*Sum_{k>=0} r(k)/y^(2*k))^y as x -> oo and r(k) = A277000(k)/A277001(k) (see example 6.1 in the Wang reference).
%H A277000 Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/FactorialFunction">Approximations to the factorial function</a>.
%H A277000 W. Wang, <a href="http://dx.doi.org/10.1016/j.jnt.2015.12.016">Unified approaches to the approximations of the gamma function</a>, J. Number Theory (2016).
%F A277000 a(n) = numerator(b(2*n)) with b(n) = Y_{n}(0, z_2, z_3,..., z_n)/n! with z_k = k!*Bernoulli(k,1/2)/(k*(k-1)) and Y_{n} the complete Bell polynomials.
%F A277000 The rational numbers have the recurrence r(n) = (1/(2*n))*Sum_{m=0..n-1} Bernoulli(2*m+2,1/2)*r(n-m-1)/(2*m+1) for n>=1, r(0)=1. - _Peter Luschny_, Sep 30 2016
%e A277000 The underlying rational sequence starts:
%e A277000 1, 0, -1/24, 0, 19/5760, 0, -2561/2903040, 0, 874831/1393459200, 0, ...
%p A277000 b := n -> CompleteBellB(n, 0, seq((k-2)!*bernoulli(k,1/2), k=2..n))/n!:
%p A277000 A277000 := n -> numer(b(2*n)): seq(A277000(n), n=0..12);
%p A277000 # Alternatively the rational sequence by recurrence:
%p A277000 R := proc(n) option remember; local k; `if`(n=0, 1,
%p A277000 add(bernoulli(2*m+2,1/2)* R(n-m-1)/(2*m+1), m=0..n-1)/(2*n)) end:
%p A277000 seq(numer(R(n)), n=0..12); # _Peter Luschny_, Sep 30 2016
%t A277000 CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}];
%t A277000 b[n_] := CompleteBellB[n, Join[{0}, Table[(k-2)! BernoulliB[k, 1/2], {k, 2, n}]]]/n!;
%t A277000 a[n_] := Numerator[b[2n]];
%t A277000 Table[a[n], {n, 0, 12}] (* _Jean-François Alcover_, Sep 09 2018 *)
%Y A277000 Cf. A001163/A001164 (Stirling), A182935/A144618 (De Moivre), A005146/A005147 (Stieltjes), A090674/A090675 (Lanczos), A181855/A181856 (Nemes), A182912/A182913 (NemesG), A182916/A182917 (Wehmeier), A182919/A182920 (Gosper), A182914/A182915, A277002/A277003 (odd power series).
%Y A277000 Cf. A276667/A276668 (the arguments of the Bell polynomials).
%K A277000 sign,frac
%O A277000 0,3
%A A277000 _Peter Luschny_, Sep 25 2016