cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277001 Denominators of an asymptotic series for the Gamma function (even power series).

This page as a plain text file.
%I A277001 #14 Sep 09 2018 09:40:07
%S A277001 1,24,5760,2903040,1393459200,367873228800,24103053950976000,
%T A277001 115694658964684800,9440684171518279680000,
%U A277001 271211974879377138647040000,3579998068407778230140928000000,1976158933761093583037792256000000,258955866680053703121272297226240000000
%N A277001 Denominators of an asymptotic series for the Gamma function (even power series).
%C A277001 For formulas and references see A277000 which is the main entry for this rational sequence.
%e A277001 The underlying rational sequence starts:
%e A277001 1, 0, -1/24, 0, 19/5760, 0, -2561/2903040, 0, 874831/1393459200, 0, ...
%p A277001 b := n -> CompleteBellB(n,0,seq((k-2)!*bernoulli(k,1/2),k=2..n))/n!:
%p A277001 A277001 := n -> denom(b(2*n)): seq(A277001(n), n=0..12);
%t A277001 CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}];
%t A277001 b[n_] := CompleteBellB[n, Join[{0}, Table[(k-2)! BernoulliB[k, 1/2], {k, 2, n}]]]/n!;
%t A277001 a[n_] := Denominator[b[2n]];
%t A277001 Table[a[n], {n, 0, 12}] (* _Jean-François Alcover_, Sep 09 2018 *)
%Y A277001 Cf. A277000 (numerators), A277002/A277003 (odd power series).
%K A277001 nonn,frac
%O A277001 0,2
%A A277001 _Peter Luschny_, Sep 25 2016