This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277002 #15 Sep 09 2018 08:36:54 %S A277002 -1,7,-31,127,-511,1414477,-8191,118518239,-5749691557,91546277357, %T A277002 -23273283019,1982765468311237,-22076500342261,455371239541065869, %U A277002 -925118910976041358111,16555640865486520478399,-1302480594081611886641,904185845619475242495834469891 %N A277002 Numerators of an asymptotic series for the Gamma function (odd power series). %C A277002 Let y = x+1/2 then Gamma(x+1) ~ sqrt(2*Pi)*(y/E)^y*exp(Sum_{k>=1} r(k)/y^(2*k-1)) as x -> oo and r(k) = A277002(k)/A277003(k) (see example 7.1 in the Wang reference). %C A277002 See also theorem 2 and formula (58) in Borwein and Corless. - _Peter Luschny_, Mar 31 2017 %H A277002 J. M. Borwein, R. M. Corless, <a href="https://arxiv.org/abs/1703.05349">Gamma and Factorial in the Monthly</a>, arXiv:1703.05349 [math.HO], 2017. %H A277002 Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/FactorialFunction">Approximations to the factorial function</a>. %H A277002 W. Wang, <a href="http://dx.doi.org/10.1016/j.jnt.2015.12.016">Unified approaches to the approximations of the gamma function</a>, J. Number Theory (2016). %F A277002 a(n) = numerator(b(2*n-1)) with b(n) = Bernoulli(n+1, 1/2)/(n*(n+1)) for n>=1, b(0)=0. %e A277002 The underlying rational sequence b(n) starts: %e A277002 0, -1/24, 0, 7/2880, 0, -31/40320, 0, 127/215040, 0, -511/608256, ... %p A277002 b := n -> `if`(n=0, 0, bernoulli(n+1, 1/2)/(n*(n+1))): %p A277002 a := n -> numer(b(2*n-1)): %p A277002 seq(a(n), n=1..18); %t A277002 b[n_] := BernoulliB[n+1, 1/2]/(n(n+1)); %t A277002 a[n_] := Numerator[b[2n-1]]; %t A277002 Array[a, 18] (* _Jean-François Alcover_, Sep 09 2018 *) %Y A277002 Cf. A277003 (denominators), A277000/A277001 (even power series). %K A277002 sign,frac %O A277002 1,2 %A A277002 _Peter Luschny_, Sep 26 2016