cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277002 Numerators of an asymptotic series for the Gamma function (odd power series).

This page as a plain text file.
%I A277002 #15 Sep 09 2018 08:36:54
%S A277002 -1,7,-31,127,-511,1414477,-8191,118518239,-5749691557,91546277357,
%T A277002 -23273283019,1982765468311237,-22076500342261,455371239541065869,
%U A277002 -925118910976041358111,16555640865486520478399,-1302480594081611886641,904185845619475242495834469891
%N A277002 Numerators of an asymptotic series for the Gamma function (odd power series).
%C A277002 Let y = x+1/2 then Gamma(x+1) ~ sqrt(2*Pi)*(y/E)^y*exp(Sum_{k>=1} r(k)/y^(2*k-1)) as x -> oo and r(k) = A277002(k)/A277003(k) (see example 7.1 in the Wang reference).
%C A277002 See also theorem 2 and formula (58) in Borwein and Corless. - _Peter Luschny_, Mar 31 2017
%H A277002 J. M. Borwein, R. M. Corless, <a href="https://arxiv.org/abs/1703.05349">Gamma and Factorial in the Monthly</a>, arXiv:1703.05349 [math.HO], 2017.
%H A277002 Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/FactorialFunction">Approximations to the factorial function</a>.
%H A277002 W. Wang, <a href="http://dx.doi.org/10.1016/j.jnt.2015.12.016">Unified approaches to the approximations of the gamma function</a>, J. Number Theory (2016).
%F A277002 a(n) = numerator(b(2*n-1)) with b(n) = Bernoulli(n+1, 1/2)/(n*(n+1)) for n>=1, b(0)=0.
%e A277002 The underlying rational sequence b(n) starts:
%e A277002 0, -1/24, 0, 7/2880, 0, -31/40320, 0, 127/215040, 0, -511/608256, ...
%p A277002 b := n -> `if`(n=0, 0, bernoulli(n+1, 1/2)/(n*(n+1))):
%p A277002 a := n -> numer(b(2*n-1)):
%p A277002 seq(a(n), n=1..18);
%t A277002 b[n_] := BernoulliB[n+1, 1/2]/(n(n+1));
%t A277002 a[n_] := Numerator[b[2n-1]];
%t A277002 Array[a, 18] (* _Jean-François Alcover_, Sep 09 2018 *)
%Y A277002 Cf. A277003 (denominators), A277000/A277001 (even power series).
%K A277002 sign,frac
%O A277002 1,2
%A A277002 _Peter Luschny_, Sep 26 2016