This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277003 #11 Sep 09 2018 08:37:02 %S A277003 24,2880,40320,215040,608256,738017280,1277952,4010803200,32006209536, %T A277003 65745715200,1736441856,12641296711680,10066329600,12611097722880, %U A277003 1337897345089536,1086454927196160,3401614098432,83088011510887219200,61022895341568 %N A277003 Denominators of an asymptotic series for the Gamma function (odd power series). %C A277003 For formulas and references see A277002 which is the main entry for this rational sequence. %F A277003 a(n) = denominator(b(2*n-1)) with b(n) = Bernoulli(n+1, 1/2)/(n*(n+1)) for n>=1, b(0)=0. %e A277003 The underlying rational sequence b(n) starts: %e A277003 0, -1/24, 0, 7/2880, 0, -31/40320, 0, 127/215040, 0, -511/608256, ... %p A277003 b := n -> `if`(n=0, 0, bernoulli(n+1, 1/2)/(n*(n+1))): %p A277003 a := n -> denom(b(2*n-1)): %p A277003 seq(a(n), n=1..19); %t A277003 b[n_] := BernoulliB[n+1, 1/2]/(n(n+1)); %t A277003 a[n_] := Denominator[b[2n-1]]; %t A277003 Array[a, 19] (* _Jean-François Alcover_, Sep 09 2018 *) %Y A277003 Cf. A277002 (numerators), A277000/A277001 (even power series). %K A277003 nonn,frac %O A277003 1,1 %A A277003 _Peter Luschny_, Sep 26 2016