This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277010 #13 Aug 31 2024 14:56:29 %S A277010 0,1,2,4,5,8,9,16,32,17,10,64,128,18,33,256,65,512,21,1024,34,129,20, %T A277010 2048,257,66,4096,37,8192,513,16384,130,32768,36,258,1025,65536, %U A277010 131072,2049,68,69,262144,514,41,524288,1048576,4097,40,133,2097152,8193,4194304,132,16385,1026,8388608,72,2050,32769,260,16777216,33554432,261,67108864,42 %N A277010 a(n) = A156552(A005117(n)); permutation of Fibbinary numbers. %C A277010 Permutation of A003714 (Fibbinary numbers). %H A277010 Antti Karttunen, <a href="/A277010/b277010.txt">Table of n, a(n) for n = 1..1025</a> %F A277010 a(n) = A156552(A005117(n)). %F A277010 Other identities. For all n >= 1: %F A277010 a(A071403(n)) = A000079(n-1). %o A277010 (Scheme) (define (A277010 n) (A156552 (A005117 n))) %o A277010 (Python) %o A277010 from math import isqrt %o A277010 from sympy import mobius, primepi, factorint %o A277010 def A277010(n): %o A277010 def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) %o A277010 def bisection(f,kmin=0,kmax=1): %o A277010 while f(kmax) > kmax: kmax <<= 1 %o A277010 while kmax-kmin > 1: %o A277010 kmid = kmax+kmin>>1 %o A277010 if f(kmid) <= kmid: %o A277010 kmax = kmid %o A277010 else: %o A277010 kmin = kmid %o A277010 return kmax %o A277010 return sum(1<<primepi(p)+i for i, p in enumerate(factorint(bisection(f), multiple=True),-1)) # _Chai Wah Wu_, Aug 31 2024 %Y A277010 Cf. A000040, A003714, A005117, A071403, A156552. %Y A277010 Cf. also A277006, A277020, A277195. %K A277010 nonn %O A277010 1,3 %A A277010 _Antti Karttunen_, Oct 07 2016