This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277021 #13 May 08 2021 23:05:32 %S A277021 0,1,2,2,6,3,4,3,30,7,8,4,12,5,6,4,210,31,32,8,36,9,10,5,60,13,14,6, %T A277021 18,7,8,5,2310,211,212,32,216,33,34,9,240,37,38,10,42,11,12,6,420,61, %U A277021 62,14,66,15,16,7,90,19,20,8,24,9,10,6,30030,2311,2312,212,2316,213,214,33,2340,217,218,34,222,35,36,10,2520,241,242 %N A277021 Left inverse of A277022. %H A277021 Antti Karttunen, <a href="/A277021/b277021.txt">Table of n, a(n) for n = 0..8191</a> %H A277021 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A277021 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %F A277021 a(n) = A276085(A005940(1+n)). %F A277021 Other identities. For all n >= 0: %F A277021 a(A277022(n)) = n. %o A277021 (Scheme) %o A277021 (define (A277021 n) (let loop ((s 0) (n n) (r 0) (i 1) (pr 1)) (cond ((zero? n) (+ s (* r pr))) ((even? n) (loop (+ s (* r pr)) (/ n 2) 0 (+ 1 i) (* (A000040 i) pr))) (else (loop s (/ (- n 1) 2) (+ 1 r) i pr))))) %o A277021 (Python) %o A277021 from sympy import primorial, primepi, prime, factorint, floor, log %o A277021 def a002110(n): return 1 if n<1 else primorial(n) %o A277021 def a276085(n): %o A277021 f=factorint(n) %o A277021 return sum([f[i]*a002110(primepi(i) - 1) for i in f]) %o A277021 def A(n): return n - 2**int(floor(log(n, 2))) %o A277021 def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n)) %o A277021 def a(n): return a276085(b(n - 1)) %o A277021 print([a(n) for n in range(1, 101)]) # _Indranil Ghosh_, Jun 22 2017 %Y A277021 Left inverse of A277022. %Y A277021 Cf. A005940, A276085. %Y A277021 Cf. also A277017. %K A277021 nonn,base %O A277021 0,3 %A A277021 _Antti Karttunen_, Sep 26 2016