A277044 Number of 2 X 2 matrices with entries in {0,1,...,n} and even determinant with no entry repeated.
0, 0, 0, 16, 96, 216, 600, 1008, 2064, 3040, 5280, 7200, 11280, 14616, 21336, 26656, 36960, 44928, 59904, 71280, 92160, 107800, 135960, 156816, 193776, 220896, 268320, 302848, 362544, 405720, 479640, 532800, 623040, 687616, 796416, 873936, 1003680, 1095768, 1248984, 1357360, 1536720, 1663200
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).
Crossrefs
Cf. A210369 (where the entries can be repeated).
Programs
-
PARI
F(n,{r=0})={my(s=vector(2),v);forvec(y=vector(4,j,[0,n]),for(k=23*!!r,23,v=numtoperm(4,k);s[1+(y[v[1]]*y[v[4]]-y[v[3]]*y[v[2]])%2]++),2*!r);return(s)} \\ Use r=1 for A210369; a(n)=F(n,0)[1]; \\ Also works for A210370 if F(n,1)[2] is used instead. - R. J. Cano, Dec 12 2016
-
PARI
a(n)=my(e=n\2+1,o=(n+1)\2); 24*binomial(o,4) + 16*binomial(e,2)*binomial(o,2) + 24*o*binomial(e,3) + 24*binomial(e,4) \\ Charles R Greathouse IV, Dec 12 2016
-
Python
def t(n): s=0 for a in range(0,n+1): for b in range(0,n+1): for c in range(0,n+1): for d in range(0,n+1): if (a!=b and a!=d and b!=d and c!=a and c!=b and c!=d): if (a*d-b*c)%2==0: s+=1 return s for i in range(0,201): print(f"{i} {t(i)}")
Formula
From Colin Barker and Charles R Greathouse IV, Dec 12 2016: (Start)
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n>8.
a(n) = (5*n^4 - 8*n^3 + 4*n^2 - 16*n)/8 for n even.
a(n) = (5*n^4 - 12*n^3 + 2*n^2 + 12*n - 7)/8 for n odd.
G.f.: 8*x^3*(2 + 10*x + 7*x^2 + 8*x^3 + 3*x^4) / ((1 - x)^5*(1 + x)^4).
(End)
Comments