cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277044 Number of 2 X 2 matrices with entries in {0,1,...,n} and even determinant with no entry repeated.

Original entry on oeis.org

0, 0, 0, 16, 96, 216, 600, 1008, 2064, 3040, 5280, 7200, 11280, 14616, 21336, 26656, 36960, 44928, 59904, 71280, 92160, 107800, 135960, 156816, 193776, 220896, 268320, 302848, 362544, 405720, 479640, 532800, 623040, 687616, 796416, 873936, 1003680, 1095768, 1248984, 1357360, 1536720, 1663200
Offset: 0

Views

Author

Indranil Ghosh, Dec 12 2016

Keywords

Comments

a(n) mod 8 = 0.

Crossrefs

Cf. A210369 (where the entries can be repeated).

Programs

  • PARI
    F(n,{r=0})={my(s=vector(2),v);forvec(y=vector(4,j,[0,n]),for(k=23*!!r,23,v=numtoperm(4,k);s[1+(y[v[1]]*y[v[4]]-y[v[3]]*y[v[2]])%2]++),2*!r);return(s)} \\ Use r=1 for A210369;
    a(n)=F(n,0)[1]; \\ Also works for A210370 if F(n,1)[2] is used instead. - R. J. Cano, Dec 12 2016
    
  • PARI
    a(n)=my(e=n\2+1,o=(n+1)\2); 24*binomial(o,4) + 16*binomial(e,2)*binomial(o,2) + 24*o*binomial(e,3) + 24*binomial(e,4) \\ Charles R Greathouse IV, Dec 12 2016
  • Python
    def t(n):
        s=0
        for a in range(0,n+1):
            for b in range(0,n+1):
                for c in range(0,n+1):
                    for d in range(0,n+1):
                       if (a!=b  and a!=d and b!=d and c!=a and c!=b and c!=d):
                            if (a*d-b*c)%2==0:
                                s+=1
        return s
    for i in range(0,201):
        print(f"{i} {t(i)}")
    

Formula

From Colin Barker and Charles R Greathouse IV, Dec 12 2016: (Start)
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n>8.
a(n) = (5*n^4 - 8*n^3 + 4*n^2 - 16*n)/8 for n even.
a(n) = (5*n^4 - 12*n^3 + 2*n^2 + 12*n - 7)/8 for n odd.
G.f.: 8*x^3*(2 + 10*x + 7*x^2 + 8*x^3 + 3*x^4) / ((1 - x)^5*(1 + x)^4).
(End)