This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277045 #8 Jan 10 2018 20:28:33 %S A277045 1,1,1,1,1,1,0,2,1,1,1,0,2,1,1,1,1,1,2,2,0,3,1,1,0,2,3,1,2,3,1,0,2,4, %T A277045 1,0,2,3,2,0,2,4,3,1,1,4,2,1,0,2,4,3,1,2,4,4,1,0,2,5,4,1,0,3,3,5,1,0, %U A277045 2,6,5,2,0,2,5,5,3,0,0,7,5,3,1,2,4,7,3,1,0,2,5,8,2,1,0,2,5,6,5,1 %N A277045 Irregular triangle T(n,k) read by rows giving the number of partitions of length k such that all of the members of the partition are distinct and in A003586. %C A277045 If n is in A003586, then T(n,1) = 1, else T(n,1) = 0. %C A277045 T(n,k) also is the number of ways of representing n involving k 1's in the base(2,3) or "dual-base number system" (i.e., base(2,3)). %C A277045 The number of "canonic" representations of n in a dual-base number system as defined by the reference as having the lowest number of terms, appears in the first column of the triangle with a value greater than 0. %C A277045 A237442(n) = the least k with a nonzero value. %D A277045 V. Dimitrov, G. Jullien, R. Muscedere, Multiple Number Base System Theory and Applications, 2nd ed., CRC Press, 2012, pp. 35-39. %e A277045 Triangle starts: %e A277045 1 %e A277045 1 %e A277045 1,1 %e A277045 1,1 %e A277045 0,2 %e A277045 1,1,1 %e A277045 0,2,1 %e A277045 1,1,1 %e A277045 1,2,2 %e A277045 0,3,1,1 %e A277045 0,2,3 %e A277045 1,2,3,1 %e A277045 0,2,4,1 %e A277045 0,2,3,2 %e A277045 0,2,4,3 %e A277045 1,1,4,2,1 %e A277045 0,2,4,3 %e A277045 1,2,4,4,1 %e A277045 0,2,5,4,1 %e A277045 0,3,3,5,1 %e A277045 ... %e A277045 Row n = 10 has terms {0,3,1,1} because 10 is not in A003586 thus k = 1 has value 0. The partitions of 10 that have distinct members that are in A003586 are {{1,9},{2,8},{4,6},{1,3,6},{1,2,3,4}}, thus there are 3 partitions of length k = 2, 1 of length k = 3, and 1 with k = 4. A237442(10) = 2. %t A277045 nn = 6^6; t = Sort@ Select[Flatten@ KroneckerProduct[2^Range[0, Ceiling@ Log2@ nn], 3^Range[0, Ceiling@ Log[3, nn]]], # <= nn &]; Table[BinCounts[#, {1, Max@ # + 1, 1}] &@ Map[Length, #] &@ Select[Subsets@ TakeWhile[t, # <= n &], Total@ # == n &], {n, 40}] %Y A277045 Cf. A003586, A237442, A276380. %K A277045 nonn,tabf %O A277045 1,8 %A A277045 _Michael De Vlieger_, Sep 27 2016