A277054
Least k such that n-th repunit times k is a pandigital.
Original entry on oeis.org
1023456789, 93125079, 9222117, 1110789, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115, 92115
Offset: 1
a(2) = 93125079 because A002275(2)*93125079 = 11*93125079 = 1024375869 that is a pandigital and 93125079 is the least number with this property.
A277056
Least k such that any sufficiently long repunit multiplied by k is a pandigital number in numerical base n.
Original entry on oeis.org
2, 5, 7, 34, 195, 727, 3724, 9124, 92115, 338161, 2780514, 6871290, 99000993
Offset: 2
Any binary repunit multiplied by 2 is a binary pandigital, so a(2)=2 (10 in binary).
k-th decimal repunit for k>4 multiplied by 92115 gives a decimal pandigital number (see A277054) with no number less than 92115 having the same property, so a(10)=92115.
A277058
Irregular array by rows: A(n,m) is the least number which gives a number containing all nonzero digits when multiplied by m-th repunit for base n; each row is truncated when reaches its stationary point.
Original entry on oeis.org
1, 5, 4, 27, 6, 194, 33, 14, 1865, 425, 45, 22875, 17603, 403, 370, 342391, 38094, 8631, 588, 6053444, 605410, 67228, 7385, 3364, 123456789, 11225079, 1113198, 210789, 11115, 2853116705
Offset: 2
The first rows of the array are:
1, (1, 1...)
5, 4, (4, 4...)
27, 6, (6, 6...)
194, 33, 14,
1865, 425, 45,
22875, 17603, 403, 370,
342391, 38094, 8631, 588,
6053444, 605410, 67228, 7385, 3364,
123456789, 11225079, 1113198, 210789, 11115
Showing 1-3 of 3 results.
Comments