A277059 Least k such that any sufficiently long repunit multiplied by k contains all nonzero digits in base n.
1, 4, 6, 14, 45, 370, 588, 3364, 11115, 168496, 271458, 2442138
Offset: 2
Examples
Any binary repunit itself contains a 1, so a(2)=1. k-th decimal repunit for k>4 multiplied by 11115 contains all nonzero decimal digits (see A277057) with no number less than 11115 having the same property, so a(10)=11115.
Formula
Conjecture:
for n=2m, a(n) = (n^m-1)/(n-1) + m - 1;
for n=4m+1, a(n) = (n^(2m)-1)(n^2+1) / (2(n^2-1)) + m;
for n=4m-1, a(n) = (n^(2m-2)-1)(n^2+1) / (2(n^2-1)) + m + n^(2m-1).
Comments