A277066 Numbers k such that (266*10^k - 11) / 3 is prime.
1, 2, 3, 4, 7, 9, 10, 14, 28, 58, 93, 121, 135, 207, 350, 423, 602, 859, 1026, 1864, 1966, 13738, 23299, 28126, 38691, 39403, 47499, 93577, 124022, 177577
Offset: 1
Examples
3 is in this sequence because (266*10^3 - 11) / 3 = 88663 is prime. Initial terms and associated primes: a(1) = 1, 883; a(2) = 2, 8863; a(3) = 3, 88663; a(4) = 4, 886663; a(5) = 7, 886666663, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 886w3.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(266*10^# - 11) / 3] &]
-
PARI
is(n)=ispseudoprime((266*10^n - 11)/3) \\ Charles R Greathouse IV, Jun 13 2017
Extensions
a(29)-a(30) from Robert Price, Apr 01 2020
Comments