This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277068 #40 Sep 15 2017 23:29:25 %S A277068 1,1,1,1,6,1,18,1,3,2,1,1,1,2,2,1,2,21,1,6,2,1,3,1,2,1,2,6,2,4,2,1,1, %T A277068 4,2,3,1,1,2,2,3,2,2,1,1,1,1,1,2,12,2,1,1,2,2,2,1,4,3,4,2,2,2,1,5,1,1, %U A277068 4,2,2,2,3,1,7,2,1,1,2,2,6,7,1,1,2,2,8 %N A277068 a(n) = gcd(s1, s2), where s1 is the sum of the odd numbers and s2 is the sum of the even numbers in the Collatz (3x+1)trajectory of n. %C A277068 Statistics of a(n) for the first 10^6 terms: %C A277068 +------+-----------------+------------+ %C A277068 | | number of terms | | %C A277068 | | such that | | %C A277068 | n | gcd(s1, s2) = n | percentage | %C A277068 +------+-----------------+------------+ %C A277068 | 1 | 401614 | 40.16% | %C A277068 | 2 | 305471 | 30.54% | %C A277068 | 3 | 44381 | 4.44% | %C A277068 | 4 | 76228 | 7.62% | %C A277068 | 5 | 15966 | 1.60% | %C A277068 | 6 | 34514 | 3.45% | %C A277068 | 7 | 8969 | 0.90% | %C A277068 | 8 | 19156 | 1.92% | %C A277068 | 9 | 4941 | 0.49% | %C A277068 | 10 | 12212 | 1.22% | %C A277068 | 11 | 3316 | 0.33% | %C A277068 | 12 | 8234 | 0.82% | %C A277068 | > 12 | 64998 | 6.50% | %C A277068 +------+-----------------+------------+ %C A277068 It seems that the values of the third column oscillate infinitely when n tend towards infinity. %C A277068 Records: 1, 6, 18, 21, 23, 93, 187, 560, 1730, 5098, 10552, 11060, 11657, 31072, 32468, 306770, 793906, 1956888, 3107101, 12210181, etc.; they appear at 1, 5, 7, 18, 133, 147, 186, 270, 839, 5090, 5244, 5488, 23255, 62132, 113624, 153341, 793842, 6849034, 9321240, 12210146, etc. - _Robert G. Wilson v_, Oct 03 2016 %H A277068 Michel Lagneau, <a href="/A277068/b277068.txt">Table of n, a(n) for n = 1..10000</a> %H A277068 Robert G. Wilson v, <a href="/A277068/a277068.txt">The first occurrence of a(n)</a> %e A277068 a(5)=6 because the Collatz trajectory of 5 is 5 -> 16 -> 8 -> 4 -> 2 -> 1 => s1 = 5+1 = 6, s2 = 16+8+4+2 = 30, and gcd(6, 30) = 6. %p A277068 nn:=10^7: %p A277068 for n from 1 to 100 do: %p A277068 m:=n:s1:=0:s2:=0: %p A277068 for i from 1 to nn while(m<>1) do: %p A277068 if irem(m,2)=0 %p A277068 then %p A277068 s2:=s2+m:m:=m/2: %p A277068 else %p A277068 s1:=s1+m:m:=3*m+1: %p A277068 fi: %p A277068 od: %p A277068 x:=gcd(s1+1,s2): printf(`%d, `,x): %p A277068 od: %t A277068 Collatz[n_] := NestWhileList[ If[ OddQ[#], 3#+1, #/2] &, n, # > 1 &]; f[n_] := Block[{c = Collatz@ n}, GCD[Plus @@ Select[c, OddQ], Plus @@ Select[c, EvenQ]]]; Array[f, 86] (* _Robert G. Wilson v_, Oct 03 2016 *) %o A277068 (PARI) a(n) = {my(se = 0); my(so = 0); while (n!=1, if (n % 2, so+=n; n = 3*n+1, se +=n; n = n/2);); gcd(se, so+1);} \\ _Michel Marcus_, Oct 03 2016 %Y A277068 Cf. A213909, A213916, A271973. %K A277068 nonn %O A277068 1,5 %A A277068 _Michel Lagneau_, Sep 28 2016