A277070 Row length of A276380(n).
1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 1, 2, 2, 2, 2, 3, 2, 3, 1, 2, 2, 2, 2, 3, 2, 3, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 3, 2, 3, 3, 1, 2, 2, 2, 2
Offset: 1
Keywords
Examples
a(n) Terms k in row n of A276380: 1 1 1 2 1 3 1 4 2 1,4 1 6 2 1,6 1 8 1 9 2 1,9 2 2,9 1 12 2 1,12 2 2,12 2 3,12 1 16 2 1,16 1 18 2 1,18 2 2,18 2 3,18 2 4,18 3 1,4,18 ... a(41) = 3 since A276380(41) = {1,4,36}, but {9,32} is the shortest possible partition of 41 such that all terms are distinct and in A003586. a(88) = 3 since A276380(88) = {1,6,81}, but {16,72} and {24,64} are shorter and have A237442(88) = 2 terms.
References
- V. Dimitrov, G. Jullien, and R. Muscedere, Multiple Number Base System Theory and Applications, 2nd ed., CRC Press, 2012, pp. 35-39.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Length@ DeleteCases[Append[Abs@ Differences@ #, Last@ #], k_ /; k == 0] &@ NestWhileList[# - SelectFirst[# - Range[0, # - 1], Block[{m = #, n = 6}, While[And[m != 1, ! CoprimeQ[m, n]], n = GCD[m, n]; m = m/n]; m == 1] &] &, n, # > 1 &], {n, 100}]
-
Python
from itertools import count, takewhile N = 100 def B(p): return list(takewhile(lambda x: x<=N, (p**i for i in count(0)))) B23set = set(b*t for b in B(2) for t in B(3) if b*t <= N) B23lst = sorted(B23set, reverse=True) def a(n): if n in B23set: return 1 big = next(t for t in B23lst if t <= n) return a(n - big) + 1 print([a(n) for n in range(1, N+1)]) # Michael S. Branicky, Sep 14 2022
Comments