A277071 Numbers n for which A277070(n) does not equal A237442(n).
41, 43, 59, 86, 88, 91, 113, 118, 123, 135, 155, 172, 176, 177, 182, 185, 209, 215, 226, 236, 239, 248, 261, 267, 270, 273, 275, 279, 307, 310, 311, 337, 339, 344, 347, 352, 354, 364, 365, 367, 369, 370, 371, 377, 383, 405, 407, 418, 425, 427, 430, 452, 455, 465, 472, 473, 475, 478, 479, 496, 499
Offset: 1
Keywords
Examples
41 is in the sequence because A276380(41) = {1,4,36}, thus A277070(41) = 3, but A237442(41) = 2. The partition of 41 with unique terms that are all in A003586 is {9,32}. 88 is in the sequence because A276380(88) = {1,6,81}, thus A277070(88) = 3, but A237442(41) = 2. There are 2 partitions of 88 with unique terms that are all in A003586: {16,72} and {24,64}.
References
- V. Dimitrov, G. Jullien, R. Muscedere, Multiple Number Base System Theory and Applications, 2nd ed., CRC Press, 2012, pp. 35-39.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..3000
Programs
-
Mathematica
f[n_] := Length@ DeleteCases[Append[Abs@ Differences@ #, Last@ #], k_ /; k == 0] &@ NestWhileList[# - SelectFirst[# - Range[0, # - 1], Module[{a = #, b = 6}, While[And[a != 1, ! CoprimeQ[a, b]], b = GCD[a, b]; a = a/b]; a == 1] &] &, n, # > 1 &]; g[n_] := Block[{p = Select[Range@ n, FactorInteger[#][[-1, 1]] < 4 &], k = 1}, While[{} == Quiet@ IntegerPartitions[n, {k}, p, 1], k++]; k]; Select[Range@ 500, f@ # != g@ # &] (* function g after Giovanni Resta at A237442 *)
Comments