This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277072 #23 Jan 12 2024 20:26:34 %S A277072 0,0,0,12,320,10890,640836,68362504,13369203792,4852623272670, %T A277072 3314874720579180,4318786169776866612,10854838945689940034808, %U A277072 53111101422881446287824390,509319855642185873306564196780,9619620856997967197817249800046480 %N A277072 Number of n-node labeled graphs with one endpoint. %D A277072 F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 31, problem 1.16(a). %H A277072 Andrew Howroyd, <a href="/A277072/b277072.txt">Table of n, a(n) for n = 1..50</a> %H A277072 Marko R. Riedel, Geoffrey Critzer, Math.Stackexchange.com, <a href="http://math.stackexchange.com/questions/1930410/">Proof of the closed form of the e.g.f. by combinatorial species</a>. %F A277072 E.g.f.: (z^2/(1-z))*(A'(z)-A(z)) where A(z) = exp(1/2*z^2) * Sum_{n>=0}(2^binomial(n, 2)*(z/exp(z))^n/n!). %p A277072 MX := 16: %p A277072 XGF := exp(z^2/2)*add((z/exp(z))^n*2^binomial(n,2)/n!, n=0..MX+5): %p A277072 K1 := z^2/(1-z)*(diff(XGF,z)-XGF): %p A277072 XS := series(K1, z=0, MX+1): %p A277072 seq(n!*coeff(XS, z, n), n=1..MX); %t A277072 m = 16; %t A277072 A[z_] := Exp[1/2*z^2]*Sum[2^Binomial[n, 2]*(z/Exp[z])^n/n!, {n, 0, m}]; %t A277072 egf = (z^2/(1 - z))*(A'[z] - A[z]); %t A277072 a[n_] := SeriesCoefficient[egf, {z, 0, n}]*n!; %t A277072 Array[a, m] (* _Jean-François Alcover_, Feb 23 2019 *) %Y A277072 Column k=1 of A327369. %Y A277072 Cf. A059167, A277073, A277074. %K A277072 nonn %O A277072 1,4 %A A277072 _Marko Riedel_, Sep 27 2016