cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277077 Decimal expansion of the root of cos(sin(x)) - x = 0.

This page as a plain text file.
%I A277077 #38 Mar 07 2025 07:52:46
%S A277077 7,6,8,1,6,9,1,5,6,7,3,6,7,9,5,9,7,7,4,6,2,0,8,6,2,3,9,5,5,8,6,5,6,4,
%T A277077 1,8,1,3,2,0,8,7,3,1,2,1,8,2,7,3,7,1,8,5,6,9,1,8,6,7,1,5,0,6,2,1,1,5,
%U A277077 7,6,5,9,6,4,2,0,4,8,9,1,2,2,2,4,4,8,8,1,9,5,1,7,8,0,7,8,8,3,8,9,0,1,9,2,9,2,4,4
%N A277077 Decimal expansion of the root of cos(sin(x)) - x = 0.
%C A277077 The fixed point solution for the composite function y = cos(sin(x)).
%C A277077 The value A131691 is equal to the arccosine of this value and this value is equal to the arcsine of A131691.
%F A277077 Recursion: f(n) = cos(sin(f(n-1))) n->infinity.
%F A277077 Root of cos(sin(x)) - x = 0.
%e A277077 0.76816915673679597746208623955865641813208731218273718569186715...
%t A277077 FindRoot[-x + Cos[Sin[x]] == 0, {x, 0.5, 1}, WorkingPrecision -> 265]
%o A277077 (PARI) solve(x=0.5, 1, cos(sin(x))-x) \\ _Michel Marcus_, Sep 29 2016
%Y A277077 Cf. A131691 (reversed form), A003957 (fixed point solution for cosine).
%K A277077 nonn,easy,cons
%O A277077 0,1
%A A277077 _David D. Acker_, Sep 27 2016