This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277078 #57 Nov 30 2016 06:15:40 %S A277078 2,1,0,1,-2,2,1,-3,3,0,1,-4,6,-4,2,1,-5,10,-10,5,0,1,-6,15,-20,15,-6, %T A277078 2,1,-7,21,-35,35,-21,7,0,1,-8,28,-56,70,-56,28,-8,2,1,-9,36,-84,126, %U A277078 -126,84,-36,9,0,1,-10,45,-120,210,-252,210,-120,45,-10,2 %N A277078 Triangular array similar to A255935 but with 0's and 2's swapped in the trailing diagonal. The columns alternate in signs. %C A277078 a(n)= %C A277078 2, %C A277078 1, 0, %C A277078 1, -2, 2, %C A277078 1, -3, 3, 0, %C A277078 1, -4, 6, -4, 2, %C A277078 etc. %C A277078 transforms every sequence s(n) in an autosequence of the second kind via the multiplication by the triangle %C A277078 s0, T2 %C A277078 s0, s1, %C A277078 s0, s1, s2, %C A277078 s0, s1, s2, s3, %C A277078 etc. %C A277078 which is the reluctant form of s(n). %C A277078 Example. %C A277078 s(n) = A131577(n) = 0, 1, 2, 4, ... . %C A277078 The multiplication gives 0, 0, 2, 3, 8, 15, 32, 63, ... = 0 followed by A166920. %C A277078 a(n) comes from alternate sum and difference of s(n) and t(n), its inverse binomial transform. In the example (t(n) = periodic 2: repeat 0, 1) the first terms are: 0+0, 1-1, 2+0, 4-1, 8+0, 16-1, 32+0, 64-1, ... . %F A277078 a(n) = A007318(n) - A197870(n+1). %t A277078 a[n_, k_] := If[k == n, 2 - 2*Mod[n, 2], (-1)^k*Binomial[n, k]]; Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Nov 16 2016 *) %Y A277078 Cf. A000035, A007318, A054977, A131577, A166920, A197870, A255935. %K A277078 sign,tabl %O A277078 0,1 %A A277078 _Paul Curtz_, Oct 23 2016