cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277078 Triangular array similar to A255935 but with 0's and 2's swapped in the trailing diagonal. The columns alternate in signs.

This page as a plain text file.
%I A277078 #57 Nov 30 2016 06:15:40
%S A277078 2,1,0,1,-2,2,1,-3,3,0,1,-4,6,-4,2,1,-5,10,-10,5,0,1,-6,15,-20,15,-6,
%T A277078 2,1,-7,21,-35,35,-21,7,0,1,-8,28,-56,70,-56,28,-8,2,1,-9,36,-84,126,
%U A277078 -126,84,-36,9,0,1,-10,45,-120,210,-252,210,-120,45,-10,2
%N A277078 Triangular array similar to A255935 but with 0's and 2's swapped in the trailing diagonal. The columns alternate in signs.
%C A277078 a(n)=
%C A277078 2,
%C A277078 1,  0,
%C A277078 1, -2, 2,
%C A277078 1, -3, 3,  0,
%C A277078 1, -4, 6, -4, 2,
%C A277078 etc.
%C A277078 transforms every sequence s(n) in an autosequence of the second kind via the multiplication by the triangle
%C A277078 s0,           T2
%C A277078 s0, s1,
%C A277078 s0, s1, s2,
%C A277078 s0, s1, s2, s3,
%C A277078 etc.
%C A277078 which is the reluctant form of s(n).
%C A277078 Example.
%C A277078 s(n) = A131577(n) = 0, 1, 2, 4, ... .
%C A277078 The multiplication gives 0, 0, 2, 3, 8, 15, 32, 63, ... = 0 followed by A166920.
%C A277078 a(n) comes from alternate sum and difference of s(n) and t(n), its inverse binomial transform. In the example (t(n) = periodic 2: repeat 0, 1) the first terms are: 0+0, 1-1, 2+0, 4-1, 8+0, 16-1, 32+0, 64-1, ... .
%F A277078 a(n) = A007318(n) - A197870(n+1).
%t A277078 a[n_, k_] := If[k == n, 2 - 2*Mod[n, 2], (-1)^k*Binomial[n, k]]; Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Nov 16 2016 *)
%Y A277078 Cf. A000035, A007318, A054977, A131577, A166920, A197870, A255935.
%K A277078 sign,tabl
%O A277078 0,1
%A A277078 _Paul Curtz_, Oct 23 2016