cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277080 Irregular triangle read by rows: T(n,k) = number of size k subsets of S_n that remain unchanged by reverse.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 0, 3, 0, 3, 0, 1, 1, 0, 12, 0, 66, 0, 220, 0, 495, 0, 792, 0, 924, 0, 792, 0, 495, 0, 220, 0, 66, 0, 12, 0, 1, 1, 0, 60, 0, 1770, 0, 34220, 0, 487635, 0, 5461512, 0, 50063860, 0, 386206920, 0, 2558620845, 0, 14783142660, 0, 75394027566
Offset: 0

Views

Author

Christian Bean, Sep 28 2016

Keywords

Comments

The reverse of a permutation is the reverse in one line notation. For example the reverse of 43521 is 12534.
T(n,k) is the number of size k bases of S_n which remain unchanged by reverse.

Examples

			For n = 4 and k = 2 the subsets that remain unchanged by reverse are {4321, 1234}, {1243, 3421}, {4231, 1324}, {1342, 2431}, {1423, 3241}, {1432, 2341}, {2134, 4312}, {3412, 2143}, {2314, 4132}, {3142, 2413}, {4213, 3124} and {4123, 3214} so T(4,2) = 12.
For n = 3 and k = 4 the subsets that remain unchanged by reverse are {231, 321, 132, 123}, {321, 213, 312, 123} and {231, 132, 312, 213} so T(3,4) = 3.
The triangle starts:
1, 1;
1, 1;
1, 0, 1;
1, 0, 3, 0, 3, 0, 1;
		

Crossrefs

Row lengths give A038507.

Programs

  • Sage
    def T(n,k):
        if k % 2 == 1:
            return 0
        return binomial( factorial(n)/2, k/2 )

Formula

T(n,k) = C(n!/2, k/2) if k is even and T(n,k) = 0 if k is odd.