A277083 Irregular triangle read by rows: T(n,k) = number of size k subsets of S_n that remain unchanged by a rotation of 180 degrees.
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 8, 36, 120, 322, 728, 1428, 2472, 3823, 5328, 6728, 7728, 8092, 7728, 6728, 5328, 3823, 2472, 1428, 728, 322, 120, 36, 8, 1, 1, 8, 84, 504, 3178, 15512, 74788, 311144, 1252819, 4577328, 16087512, 52691408, 165911284
Offset: 0
Examples
For n = 3 and k = 3, the subsets unchanged by rotating 180 degrees are {213,132,123}, {231,312,123}, {321,132,213} and {321,231,312} so T(3,3) = 4. Triangle starts: 1, 1; 1, 1; 1, 2, 1; 1, 2, 3, 4, 3, 2, 1;
Formula
T(n,k) = Sum_( binomial( n! - R(n), i ) * binomial( R(n), k-2*i ) for i in [0..floor(k/2)] ) where R(n) = A037223(n).
Comments