This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277088 #17 Oct 19 2016 07:54:34 %S A277088 5,12,29,71,174,427,1048,2573,6318,15514,38095,93544,229702,564045, %T A277088 1385042,3401044,8351444,20507414,50357044,123654396,303639937, %U A277088 745603993,1830870208,4495799044,11039673351,27108504296,66566372193,163457262657,401377990645 %N A277088 Pisot sequences L(5,12), S(5,12). %H A277088 Ilya Gutkovskiy, <a href="/A277088/a277088_1.pdf">Pisot sequences L(x,y)</a> %H A277088 <a href="/index/Ph#Pisot">Index entries for Pisot sequences</a> %F A277088 a(n) = ceiling(a(n-1)^2/a(n-2)), a(0) = 5, a(1) = 12. %F A277088 a(n) = floor(a(n-1)^2/a(n-2)+1), a(0) = 5, a(1) = 12. %F A277088 Conjectures: (Start) %F A277088 G.f.: (5 - 3*x + 3*x^2 - 2*x^3 + x^5 - 3*x^6 - x^7 - 2*x^8)/((1 - x)*(1 - 2*x - 2*x^3 - x^4 - x^5 - 2*x^6 - x^7 - x^8)). %F A277088 a(n) = 3*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) + a(n-6) - a(n-7) - a(n-9). (End) %t A277088 RecurrenceTable[{a[0] == 5, a[1] == 12, a[n] == Ceiling[a[n - 1]^2/a[n - 2]]}, a, {n, 28}] %t A277088 RecurrenceTable[{a[0] == 5, a[1] == 12, a[n] == Floor[a[n - 1]^2/a[n - 2] + 1]}, a, {n, 28}] %Y A277088 Cf. A008776 for definitions of Pisot sequences. %Y A277088 Cf. A000129 (with offset 3 appears to be Pisot sequences E(5,12), P(5,12)). %Y A277088 Cf. A020736, A020737, A048583. %K A277088 nonn,easy %O A277088 0,1 %A A277088 _Ilya Gutkovskiy_, Sep 29 2016