This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277089 #12 Oct 03 2016 03:42:17 %S A277089 6,15,38,97,248,635,1626,4164,10664,27311,69945,179134,458775,1174956, %T A277089 3009148,7706648,19737289,50548641,129458768,331553377,849132458, %U A277089 2174690356,5569541124,14264002343,36531153701,93558957622,239611336203,613662164440,1571633704952 %N A277089 Pisot sequences L(6,15), S(6,15). %H A277089 Ilya Gutkovskiy, <a href="/A277089/a277089_1.pdf">Pisot sequences L(x,y)</a> %H A277089 <a href="/index/Ph#Pisot">Index entries for Pisot sequences</a> %F A277089 a(n) = ceiling(a(n-1)^2/a(n-2)), a(0) = 6, a(1) = 15. %F A277089 a(n) = floor(a(n-1)^2/a(n-2)+1), a(0) = 6, a(1) = 15. %F A277089 Conjectures: (Start) %F A277089 G.f.: (6 - 3*x - x^2 - 2*x^3 + x^4 + 3*x^5 - 5*x^6)/((1 - x)*(1 - 2 x - x^2 - x^3 - 2*x^6)). %F A277089 a(n) = 3*a(n-1) - a(n-2) - a(n-4) + 2*a(n-6) - 2*a(n-7). (End) %t A277089 RecurrenceTable[{a[0] == 6, a[1] == 15, a[n] == Ceiling[a[n - 1]^2/a[n - 2]]}, a, {n, 28}] %t A277089 RecurrenceTable[{a[0] == 6, a[1] == 15, a[n] == Floor[a[n - 1]^2/a[n - 2] + 1]}, a, {n, 28}] %Y A277089 Cf. See A008776 for definitions of Pisot sequences. %Y A277089 Cf. A020717, A048585, A048586, A048587. %K A277089 nonn,easy %O A277089 0,1 %A A277089 _Ilya Gutkovskiy_, Sep 29 2016