This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277091 #10 Feb 16 2025 08:33:36 %S A277091 0,2,4,36,128,760,3312,17264,80896,403488,1939520,9527872,46209024, %T A277091 225808256,1098542848,5358401280,26096402432,127210422784, %U A277091 619770479616,3020486878208,14717760471040,71722337236992,349493321068544,1703099363454976,8299105221869568,40441601532108800 %N A277091 a(n) = ((1 + sqrt(15))^n - (1 - sqrt(15))^n)/sqrt(15). %C A277091 Number of zeros in substitution system {0 -> 1111111, 1 -> 1001} at step n from initial string "1" (see example). %H A277091 Ilya Gutkovskiy, <a href="/A277091/a277091.pdf">Illustration (substitution system {0 -> 1111111, 1 -> 1001}) and similar sequences</a> %H A277091 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SubstitutionSystem.html">Substitution System</a> %H A277091 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,14). %F A277091 O.g.f.: 2*x/(1 - 2*x - 14*x^2). %F A277091 E.g.f.: 2*sinh(sqrt(15)*x)*exp(x)/sqrt(15). %F A277091 a(n) = 2*a(n-1) + 14*a(n-2). %F A277091 Lim_{n->infinity} a(n+1)/a(n) = 1 + sqrt(15) = 1 + A010472. %e A277091 Evolution from initial string "1": 1 -> 1001 -> 1001111111111111111001 -> ... %e A277091 Therefore, number of zeros at step n: %e A277091 a(0) = 0; %e A277091 a(1) = 2; %e A277091 a(2) = 4, etc. %t A277091 LinearRecurrence[{2, 14}, {0, 2}, 26] %o A277091 (PARI) concat(0, Vec(2*x/(1-2*x-14*x^2) + O(x^99))) \\ _Altug Alkan_, Oct 01 2016 %Y A277091 Cf. A010472, A103435, A274520, A274526. %K A277091 nonn,easy %O A277091 0,2 %A A277091 _Ilya Gutkovskiy_, Sep 29 2016