This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277102 #15 Jun 12 2025 11:15:16 %S A277102 1,1,1,2,4,5,7,10,15,21,28,37,50,67,88,115,150,193,248,317,402,508, %T A277102 640,802,1002,1248,1545,1908,2351,2887,3532,4313,5251,6377,7724,9334, %U A277102 11254,13541,16253,19473,23286,27791,33100,39362,46723,55370,65504,77377,91257,107477,126380 %N A277102 Number of partitions of n containing no part i of multiplicity i-1. %H A277102 Vaclav Kotesovec, <a href="/A277102/b277102.txt">Table of n, a(n) for n = 0..5000</a> (terms 0..1000 from Alois P. Heinz) %F A277102 a(n) = A277100(n,0). %F A277102 G.f.: g(x) = Product_{i>=1}(1/(1-x^(i+1)) - x^(i(i+1))). %e A277102 a(4) = 4 because we have [1,1,1,1], [1,3], [2,2], and [4]; the partition [1,1,2] does not qualify. %p A277102 g := (product(1/(1-x^(i+1))-x^(i*(i+1)), i = 1 .. 100))/(1-x): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50); %p A277102 # second Maple program: %p A277102 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A277102 add(`if`(i-1=j, 0, b(n-i*j, i-1)), j=0..n/i))) %p A277102 end: %p A277102 a:= n-> b(n$2): %p A277102 seq(a(n), n=0..60); # _Alois P. Heinz_, Oct 10 2016 %t A277102 b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[If[i-1 == j, 0, b[n-i*j, i-1]], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, Dec 11 2016 after _Alois P. Heinz_ *) %Y A277102 Cf. A276427, A276428, A276429, A276433, A276434, A277099, A277100, A277101. %K A277102 nonn %O A277102 0,4 %A A277102 _Emeric Deutsch_, Oct 10 2016