This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277103 #25 Jul 06 2021 02:52:23 %S A277103 1,1,0,1,3,3,1,3,10,10,4,10,27,27,13,28,69,69,37,72,161,162,96,171, %T A277103 361,364,230,388,768,777,522,836,1581,1605,1128,1739,3145,3203,2345, %U A277103 3495,6094,6225,4712,6831,11511,11794,9198,13010,21293,21875,17496,24239 %N A277103 Number of partitions of n for which the number of odd parts is equal to the positive alternating sum of the parts. %C A277103 It follows by conjugation that the partition statistics "alternating sum" and "number of odd parts" are equidistributed. Consequently, the self-conjugate partitions satisfy the required condition. %C A277103 In the first Maple program (improvable) AS gives the positive alternating sum of a finite sequence s, OP gives the number of odd terms of a finite sequence of positive integers. %C A277103 For the specified value of n, the second Maple program lists the partitions of n counted by a(n). %C A277103 Number of integer partitions of n with the same number of odd parts as their conjugate. - _Gus Wiseman_, Jun 27 2021 %H A277103 Alois P. Heinz, <a href="/A277103/b277103.txt">Table of n, a(n) for n = 0..1000</a> %e A277103 a(3) = 1 because we have [2,1]. The partitions [3] and [1,1,1] do not qualify. %e A277103 a(4) = 3 because we have [3,1], [2,2], and [2,1,1]. The partitions [4] and [1,1,1,1] do not qualify. %p A277103 with(combinat): AS := proc (s) options operator, arrow: abs(add((-1)^(i-1)*s[i], i = 1 .. nops(s))) end proc: OP := proc (s) local ct, j: ct := 0: for j to nops(s) do if `mod`(s[j], 2) = 1 then ct := ct+1 else end if end do: ct end proc: a := proc (n) local P, c, k: P := partition(n): c := 0: for k to nops(P) do if AS(P[k]) = OP(P[k]) then c := c+1 else end if end do: c end proc: seq(a(n), n = 0 .. 50); %p A277103 n := 8: with(combinat): AS := proc (s) options operator, arrow: abs(add((-1)^(i-1)*s[i], i = 1 .. nops(s))) end proc: OP := proc (s) local ct, j: ct := 0: for j to nops(s) do if `mod`(s[j], 2) = 1 then ct := ct+1 else end if end do: ct end proc: P := partition(n): C := {}: for k to nops(P) do if AS(P[k]) = OP(P[k]) then C := `union`(C, {P[k]}) else end if end do: C; %p A277103 # alternative Maple program: %p A277103 b:= proc(n, i, s, t) option remember; `if`(n=0, %p A277103 `if`(s=0, 1, 0), `if`(i<1, 0, b(n, i-1, s, t)+ %p A277103 `if`(i>n, 0, b(n-i, i, s+t*i-irem(i, 2), -t)))) %p A277103 end: %p A277103 a:= n-> b(n$2, 0, 1): %p A277103 seq(a(n), n=0..60); # _Alois P. Heinz_, Oct 19 2016 %t A277103 b[n_, i_, s_, t_] := b[n, i, s, t] = If[n == 0, If[s == 0, 1, 0], If[i<1, 0, b[n, i-1, s, t] + If[i>n, 0, b[n-i, i, s + t*i - Mod[i, 2], -t]]]]; a[n_] := b[n, n, 0, 1]; Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, Dec 21 2016, after _Alois P. Heinz_ *) %t A277103 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Table[Length[Select[IntegerPartitions[n],Count[#,_?OddQ]==Count[conj[#],_?OddQ]&]],{n,0,15}] (* _Gus Wiseman_, Jun 27 2021 *) %Y A277103 Comparing even parts to odd conjugate parts gives A277579. %Y A277103 Comparing product of parts to product of conjugate parts gives A325039. %Y A277103 The reverse version is A345196. %Y A277103 A000041 counts partitions of 2n with alternating sum 0, ranked by A000290. %Y A277103 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A277103 A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741). %Y A277103 A124754 gives alternating sums of standard compositions (reverse: A344618). %Y A277103 A316524 is the alternating sum of the prime indices of n (reverse: A344616). %Y A277103 A344610 counts partitions by sum and positive reverse-alternating sum. %Y A277103 A344611 counts partitions of 2n with reverse-alternating sum >= 0. %Y A277103 Cf. A000070, A000097, A000700, A006330, A027187, A027193, A236559, A257991, A325534, A325535, A344607, A344651. %K A277103 nonn %O A277103 0,5 %A A277103 _Emeric Deutsch_, Oct 18 2016