A277111 Lesser of twin primes P(k) and P(k+1) such that Sd(P(k)) + Sd(P(k+1)) = Sd(k) + Sd(k+1), where Sd(x) is the sum of digits of x.
1619, 2309, 2339, 12239, 28109, 35081, 37307, 37571, 50549, 51059, 51719, 62129, 64919, 65729, 87539, 89519, 91079, 113759, 121439, 121631, 160649, 170351, 174329, 182129, 191249, 205949, 215459, 223679, 231839, 254039, 270269, 285119, 301841, 317489, 319829
Offset: 1
Examples
P(256) = 1619, P(257) = 1621; Sd(256) + Sd(257) = 13 + 14 = 27 and Sd(1619) + Sd(1621) = 17 + 10 = 27.
Links
- Paolo P. Lava, First 60 couples [k, P(k)]
Programs
-
Maple
T:=proc(w) local x, y, z; x:=w; y:=0; for z from 1 to ilog10(x)+1 do y:=y+(x mod 10); x:=trunc(x/10); od; y; end: P:= proc(q) local a,b,k,n; for n from 1 to q do if ithprime(n+1)-ithprime(n)=2 then if T(ithprime(n))+T(ithprime(n+1))=T(n)+T(n+1) then print(ithprime(n)); fi; fi; od; end: P(10^5);