This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277113 #20 Nov 05 2016 08:47:32 %S A277113 34,68,102,137,171,205,239,274,308,342,376,411,445,479,513,548,582, %T A277113 616,650,685,719,753,787,822,856,890,924,959,993,1027,1061,1096,1130, %U A277113 1164,1198,1233,1267,1301,1335,1370,1404,1438,1472,1507,1541,1575,1609,1644,1678 %N A277113 a(n) = floor(n/(1-Pi/(sqrt(5)+1))). %C A277113 The goal is to generate a ratio near 1 from two well-known constants. %H A277113 Paulo Romero Zanconato Pinto, <a href="/A277113/b277113.txt">Table of n, a(n) for n = 1..10000</a> %H A277113 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a> %F A277113 a(n) = floor(n/(1-Pi/(sqrt(5)+1))). %e A277113 For n = 10 we have that floor(10/(1-Pi/(sqrt(5)+1))) = floor(10/0.02919448...) = floor(342.5304983...) so a(10) = 342. %p A277113 A277113:=n->floor(n/(1-Pi/(sqrt(5)+1))): seq(A277113(n), n=1..100); %t A277113 f[n_] := Floor[n/(1-Pi/(Sqrt[5]+1))]; Array[f, 100, 1] %o A277113 (PARI) a(n) = n\(1-Pi/(sqrt(5)+1)) \\ _Michel Marcus_, Oct 29 2016 %Y A277113 Complement of A277112. %Y A277113 Cf. A000796, A001622, A094881, A094882. %K A277113 nonn %O A277113 1,1 %A A277113 _Paulo Romero Zanconato Pinto_, Sep 30 2016 %E A277113 More terms from _Michel Marcus_, Oct 29 2016