cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277131 Magic numbers of anti-Mackay icosahedra.

This page as a plain text file.
%I A277131 #21 Oct 25 2016 08:10:52
%S A277131 45,127,279,521,873,1355,1987,2789,3781,4983,6415,8097,10049,12291,
%T A277131 14843,17725,20957,24559,28551,32953,37785,43067,48819,55061,61813,
%U A277131 69095,76927,85329,94321,103923,114155,125037,136589,148831,161783,175465,189897,205099
%N A277131 Magic numbers of anti-Mackay icosahedra.
%H A277131 Colin Barker, <a href="/A277131/b277131.txt">Table of n, a(n) for n = 2..1000</a>
%H A277131 D. Bochicchio and R. Ferrando, <a href="http://dx.doi.org/10.1021/nl102588p">Size-Dependent Transition to High-Symmetry Chiral Structures in AgCu, AgCo, AgNi, and AuNi Nanoalloys</a>, Nano Letters, Vol. 10, No. 10 (2010), 4211-4216.
%H A277131 <a href="/index/Mag">Index entries for sequences related to magic numbers</a>
%H A277131 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A277131 a(n) = A005902(n) - A008592(n-1).
%F A277131 a(n) = 10/3*n^3 + 25*n^2 + 161/3*n + 45 with offset 0.
%F A277131 From _Colin Barker_, Oct 01 2016: (Start)
%F A277131 a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>5.
%F A277131 a(n) = 11-(19*n)/3+5*n^2+(10*n^3)/3.
%F A277131 G.f.: x^2*(45-53*x+41*x^2-13*x^3) / (1-x)^4.
%F A277131 (End)
%p A277131 A277131:=n->11-(19*n)/3+5*n^2+(10*n^3)/3: seq(A277131(n), n=2..50); # _Wesley Ivan Hurt_, Oct 07 2016
%t A277131 DeleteCases[CoefficientList[Series[x^2*(45 - 53 x + 41 x^2 - 13 x^3)/(1 - x)^4, {x, 0, 39}], x], 0] (* _Michael De Vlieger_, Oct 02 2016 *)
%o A277131 (PARI) a(n) = (2*n+1) * (5*n^2+5*n+3) / 3 - 10*(n-1)
%o A277131 (PARI) Vec(x^2*(45-53*x+41*x^2-13*x^3)/(1-x)^4 + O(x^50)) \\ _Colin Barker_, Oct 01 2016
%Y A277131 Cf. A005902, A008592, A018226, A018227.
%K A277131 nonn,easy
%O A277131 2,1
%A A277131 _Felix Fröhlich_, Oct 01 2016