A196842 Table of the elementary symmetric functions a_k(1,2,4,5,...,n+1).
1, 1, 1, 1, 3, 2, 1, 7, 14, 8, 1, 12, 49, 78, 40, 1, 18, 121, 372, 508, 240, 1, 25, 247, 1219, 3112, 3796, 1680, 1, 33, 447, 3195, 12864, 28692, 32048, 13440, 1, 42, 744, 7218, 41619, 144468, 290276, 301872, 120960, 1, 52, 1164, 14658, 113799, 560658, 1734956, 3204632, 3139680, 1209600
Offset: 0
Examples
n\k 0 1 2 3 4 5 6 7 ... 0: 1 1: 1 1 2: 1 3 2 3: 1 7 14 8 4: 1 12 49 78 40 5: 1 18 121 372 508 240 6: 1 25 247 1219 3112 3796 1680 7: 1 33 447 3195 12864 28692 32048 13440 ... a(1,0) = a_0(1):= 1, a(1,1) = a_1(1)= 1. a(3,2) = a_2(1,2,4) = 1*2 + 1*4 + 2*4 = 14. a(3,2) = 1*|s(5,3)| - 3*|s(5,4)| + 9*|s(5,5)| = 1*35-3*10+9*1 = 14.
Crossrefs
Programs
-
Maple
A196842 := proc(n,k) if n = 1 and k =1 then 1 ; else add( abs( combinat[stirling1](n+2,n+2-k+m))*(-3)^m,m=0..k) ; end if; end proc: # R. J. Mathar, Oct 01 2016
-
Mathematica
a[n_, k_] := If[n == 1 && k == 1, 1, Sum[(-3)^m Abs[StirlingS1[n + 2, n + 2 - k + m]], {m, 0, k}]]; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 16 2023, after R. J. Mathar *)
Comments