This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277168 #34 Sep 08 2022 08:46:17 %S A277168 1,6,300,41160,11022480,4870182240,3211179491520,2955402450000000, %T A277168 3619848890071814400,5693251850259515942400, %U A277168 11182902317022859155532800,26829777470359851910918195200,77205601373291015625000000000000,262462731609500617105685266652160000,1040649406375513845021644881423595520000 %N A277168 Coefficients in the series reversion of x*exp(-x^2). %C A277168 Central terms of triangle A201685. %C A277168 a(n) is the number of connected endofunctions on {1,2,...,2*n-1} that have exactly n nodes in the unique cycle of its digraph representation. %H A277168 G. C. Greubel, <a href="/A277168/b277168.txt">Table of n, a(n) for n = 1..195</a> %F A277168 E.g.f. A(x) = Sum_{n>=1} a(n) * x^(2*n-1) / (2*n-1)! satisfies: %F A277168 (1) A( x*exp(-x^2) ) = x. %F A277168 (2) A(x) = x*exp(A(x)^2). %F A277168 (3) A(x) = Sum_{n>=1} (2*n-1)^(n-2) * x^(2*n-1) / (n-1)!. %F A277168 (4) A(x)^2 = Sum_{n>=1} (2*n)^(n-1) * x^(2*n) / n!. %F A277168 (5) A(x) = sqrt( LambertW(-2*x^2)/(-2) ). %F A277168 a(n) = binomial(2*n-1, n-1) * (2*n-1)^(n-2) * n!. %F A277168 a(n) ~ 2^(3*n-5/2) * n^(2*n-2) / exp(n+1/2). - _Vaclav Kotesovec_, Oct 07 2016 %e A277168 E.g.f.: A(x) = x + 6*x^3/3! + 300*x^5/5! + 41160*x^7/7! + 11022480*x^9/9! + 4870182240*x^11/11! + 3211179491520*x^13/13! + 2955402450000000*x^15/15! +... %e A277168 such that A( x*exp(-x^2) ) = x. %e A277168 E.g.f. may also be written %e A277168 A(x) = x + 3^0*x^3/1! + 5^1*x^5/2! + 7^2*x^7/3! + 9^3*x^9/4! + 11^4*x^11/5! + ... %e A277168 which satisfies: A(x) = x*exp(A(x)^2). %e A277168 The square of the e.g.f. may be expressed as: %e A277168 A(x)^2 = 2^0*x^2/1! + 4^1*x^4/2! + 6^2*x^6/3! + 8^3*x^8/4! + 10^4*x^10/5! + ... %e A277168 which equals LambertW(-2*x^2)/(-2). %p A277168 seq( binomial(2*n-1, n-1)*(2*n-1)^(n-2)*n!, n=1..15); # _G. C. Greubel_, Jan 08 2020 %t A277168 Table[Binomial[2*n-1, n-1]*(2*n-1)^(n-2)*n!, {n, 1, 15}] (* _Vaclav Kotesovec_, Oct 07 2016 *) %o A277168 (PARI) {a(n) = (2*n-1)! * polcoeff( serreverse(x*exp(-x^2 +O(x^(2*n)))),2*n-1)} %o A277168 for(n=1,20,print1(a(n),", ")) %o A277168 (PARI) {a(n) = binomial(2*n-1, n-1) * (2*n-1)^(n-2) * n! } %o A277168 for(n=1,20,print1(a(n),", ")) %o A277168 (Magma) [Binomial(2*n-1, n-1)*(2*n-1)^(n-2)*Factorial(n): n in [1..15]]; // _G. C. Greubel_, Jan 08 2020 %o A277168 (Sage) [binomial(2*n-1, n-1)*(2*n-1)^(n-2)*factorial(n) for n in (1..15)] # _G. C. Greubel_, Jan 08 2020 %o A277168 (GAP) List([1..15], n-> Binomial(2*n-1, n-1)*(2*n-1)^(n-2)*Factorial(n)); # _G. C. Greubel_, Jan 08 2020 %Y A277168 Cf. A201685. %K A277168 nonn %O A277168 1,2 %A A277168 _Paul D. Hanna_, Oct 01 2016