This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277202 #9 Feb 16 2025 08:33:36 %S A277202 1,1,5,52,1547,116501,23266914,12105638490,16520674898562, %T A277202 58983635652443448,551479789789947609461,13497628802000408584637131, %U A277202 864924115332005227077169874150,145099921975789867545171624212383670 %N A277202 Ratio of the fibonomial Catalan numbers and Lucas numbers. %D A277202 H. W. Gould, Fibonomial Catalan numbers: arithmetic properties and a table of the first fifty numbers, Abstract 71T-A216, Notices Amer. Math. Soc, 1971, page 938. %H A277202 H. W. Gould, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/10-4/gould1-a.pdf">A new primality criterion of Mann and Shanks and its relation to a theorem of Hermite with extension to Fibonomials</a>, Fib. Quart., 10 (1972), 355-364, 372. %H A277202 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/q-BinomialCoefficient.html">q-Binomial Coefficient</a>, <a href="https://mathworld.wolfram.com/LucasNumber.html">Lucas Number</a>. %F A277202 a(n) = A003150(n)/A000032(n). %F A277202 a(n) ~ sqrt(5) * phi^(n^2-2*n-1) / C, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio and C = A062073 = (-1/phi^2)_inf = 1.22674201072035324441763... is the Fibonacci factorial constant. %t A277202 Table[Fibonorial[2 n]/(Fibonorial[n] Fibonorial[n + 1] LucasL[n]), {n, 1, 15}] (* since version 10.0, or *) %t A277202 Round@Table[GoldenRatio^(n^2) QBinomial[2 n, n, -1/GoldenRatio^2]/(Fibonacci[n + 1] LucasL[n]), {n, 1, 15}] (* Round is equivalent to FullSimplify here, but is much faster *) %Y A277202 Cf. A000032, A010048, A000045, A003267, A003150. %K A277202 nonn,easy %O A277202 1,3 %A A277202 _Vladimir Reshetnikov_, Oct 04 2016