cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277218 Maximal coefficient among the polynomials in row n of the triangle of q-binomial coefficients.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 5, 8, 12, 20, 32, 58, 94, 169, 289, 526, 910, 1667, 2934, 5448, 9686, 18084, 32540, 61108, 110780, 208960, 381676, 723354, 1328980, 2527074, 4669367, 8908546, 16535154, 31630390, 58965214, 113093022, 211591218, 406680465, 763535450, 1470597342, 2769176514, 5342750699, 10089240974
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 05 2016

Keywords

Comments

q-binomial coefficients are polynomials in q with integer coefficients.
Is A055606 a shifted version of this sequence?

Examples

			Row 5 of the triangle of q-binomial coefficients is [1, 1 + q + q^2 + q^3 + q^4, 1 + q + 2*q^2 + 2*q^3 + 2*q^4 + q^5 + q^6, 1 + q + 2*q^2 + 2*q^3 + 2*q^4 + q^5 + q^6, 1 + q + q^2 + q^3 + q^4, 1], so the max coefficient is 2. Hence a(5) = 2.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k, c, v, q;
      uses QDifferenceEquations;
      v:= 0:
      for k from 0 to n do
        c:= coeffs(expand(expand(QBinomial(n,k,q))),q);
        v:= max(v, max(c));
      od:
    v
    end proc:
    map(f, [$0..50]); # Robert Israel, Oct 05 2016
  • Mathematica
    Table[Coefficient[Expand[FunctionExpand[QBinomial[n, Floor[n/2], q]]], q, Floor[n^2/8]], {n, 0, 30}] (* Vladimir Reshetnikov, Sep 24 2021 *)

Formula

a(n) ~ sqrt(3) * 2^(n+2) / (Pi * n^2). - Vaclav Kotesovec, Oct 09 2016