A277218 Maximal coefficient among the polynomials in row n of the triangle of q-binomial coefficients.
1, 1, 1, 1, 2, 2, 3, 5, 8, 12, 20, 32, 58, 94, 169, 289, 526, 910, 1667, 2934, 5448, 9686, 18084, 32540, 61108, 110780, 208960, 381676, 723354, 1328980, 2527074, 4669367, 8908546, 16535154, 31630390, 58965214, 113093022, 211591218, 406680465, 763535450, 1470597342, 2769176514, 5342750699, 10089240974
Offset: 0
Keywords
Examples
Row 5 of the triangle of q-binomial coefficients is [1, 1 + q + q^2 + q^3 + q^4, 1 + q + 2*q^2 + 2*q^3 + 2*q^4 + q^5 + q^6, 1 + q + 2*q^2 + 2*q^3 + 2*q^4 + q^5 + q^6, 1 + q + q^2 + q^3 + q^4, 1], so the max coefficient is 2. Hence a(5) = 2.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..200
- E. Friedman and M. Keith, Magic Carpets, J. Int Sequences, 3 (2000), #P.00.2.5.
- Eric W. Weisstein, q-Binomial Coefficient
- Wikipedia, q-binomial
Programs
-
Maple
f:= proc(n) local k, c, v, q; uses QDifferenceEquations; v:= 0: for k from 0 to n do c:= coeffs(expand(expand(QBinomial(n,k,q))),q); v:= max(v, max(c)); od: v end proc: map(f, [$0..50]); # Robert Israel, Oct 05 2016
-
Mathematica
Table[Coefficient[Expand[FunctionExpand[QBinomial[n, Floor[n/2], q]]], q, Floor[n^2/8]], {n, 0, 30}] (* Vladimir Reshetnikov, Sep 24 2021 *)
Formula
a(n) ~ sqrt(3) * 2^(n+2) / (Pi * n^2). - Vaclav Kotesovec, Oct 09 2016
Comments