This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277227 #12 Jul 26 2023 03:16:40 %S A277227 1,1,2,1,3,3,1,4,2,4,1,5,5,5,5,1,6,3,2,3,6,1,7,7,7,7,7,7,1,8,4,8,2,8, %T A277227 4,8,1,9,9,3,9,9,3,9,9,1,10,5,10,5,2,5,10,5,10,1,11,11,11,11,11,11,11, %U A277227 11,11,11,1,12,6,4,3,12,2,12,3,4,6,12 %N A277227 Triangular array T read by rows: T(n,k) gives the additive orders k modulo n, for k = 0,1, ..., n-1. %C A277227 As a sequence A054531(n) = a(n+1), n >= 1. %C A277227 As a triangular array this is the row reversed version of A054531. %C A277227 The additive order of an element x of a group (G, +) is the least positive integer j with j*x := x + x + ... + x (j summands) = 0. %C A277227 Equals A106448 when the first column (k = 0) of ones is removed. - _Georg Fischer_, Jul 26 2023 %H A277227 Indranil Ghosh, <a href="/A277227/b277227.txt">Rows 1..100 of triangle, flattened</a> %F A277227 T(n, k) = order of the elements k of the finite abelian group (Z/(n Z), +), for k = 0, 1, ..., n-1. %F A277227 T(n, k) = n/GCD(n, k), n >= 1, k = 0, 1, ..., n-1. %F A277227 T(n, k) = A054531(n, n-k), n >=1, k = 0, 1, ..., n-1. %e A277227 The triangle begins: %e A277227 n\k 0 1 2 3 4 5 6 7 8 9 10 11 ... %e A277227 1: 1 %e A277227 2: 1 2 %e A277227 3: 1 3 3 %e A277227 4: 1 4 2 4 %e A277227 5: 1 5 5 5 5 %e A277227 6: 1 6 3 2 3 6 %e A277227 7: 1 7 7 7 7 7 7 %e A277227 8: 1 8 4 8 2 8 4 8 %e A277227 9: 1 9 9 3 9 9 3 9 9 %e A277227 10: 1 10 5 10 5 2 5 10 5 10 %e A277227 11: 1 11 11 11 11 11 11 11 11 11 11 %e A277227 12: 1 12 6 4 3 12 2 12 3 4 6 12 %e A277227 ... %e A277227 T(n, 0) = 1*0 = 0 = 0 (mod n), and n/GCD(n,0) = n/n = 1. %e A277227 T(4, 2) = 2 because 2 + 2 = 4 = 0 (mod 4) and 2 is not 0 (mod 4). %e A277227 T(4, 2) = n/GCD(2, 4) = 4/2 = 2. %Y A277227 Cf. A054531, A106448. %K A277227 nonn,tabl,easy %O A277227 1,3 %A A277227 _Wolfdieter Lang_, Oct 20 2016