This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277229 #19 Dec 11 2019 06:49:27 %S A277229 0,1,10,48,158,413,924,1848,3396,5841,9526,14872,22386,32669,46424, %T A277229 64464,87720,117249,154242,200032,256102,324093,405812,503240,618540, %U A277229 754065,912366,1096200,1308538,1552573,1831728,2149664,2510288,2917761,3376506,3891216 %N A277229 Convolution of the odd-indexed triangular numbers (A000384(n+1)) and the squares (A000290). %C A277229 This sequence was originally proposed in a comment on A071238 by J. M. Bergot as giving the first differences. Therefore, a(n) gives the partial sums of A071238. %H A277229 Colin Barker, <a href="/A277229/b277229.txt">Table of n, a(n) for n = 0..1000</a> %H A277229 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %F A277229 O.g.f.: x*(1 + x)*(1 + 3*x)/(1 - x)^6 = ((1 + 3*x)/(1 - x)^3)*(x*(1 + x)/(1 - x)^3). %F A277229 a(n) = Sum_{k=0..n} A000384(n+1-k)*A000290(k). %F A277229 a(n) = binomial(n+2, 3)*(4*n^2 + 3*n + 3)/10 = n*(n + 1)*(n + 2)*(4*n^2 + 3*n + 3)/60. %F A277229 a(n) = Sum_{k=0..n} A071238(k). %F A277229 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5. - _Colin Barker_, Oct 21 2016 %t A277229 Table[n (n + 1) (n + 2) (4 n^2 + 3 n + 3)/60, {n, 0, 40}] (* _Bruno Berselli_, Oct 21 2016 *) %o A277229 (PARI) concat(0, Vec(x*((1+x)*(1+3*x))/(1-x)^6 + O(x^50))) \\ _Colin Barker_, Oct 21 2016 %Y A277229 Cf. A000217, A000290, A000384, A071238. %K A277229 nonn,easy %O A277229 0,3 %A A277229 _Wolfdieter Lang_, Oct 20 2016