A277230 Irregular triangular array T(n, k) giving in row n the base of the Ferrers diagram of the k-th partition of n into distinct parts. The partitions of n are taken in Abramowitz-Stegun order but with decreasing parts. T(n, k) is the smallest part of the k-th partition of n into distinct parts.
1, 2, 3, 1, 4, 1, 5, 1, 2, 6, 1, 2, 1, 7, 1, 2, 3, 1, 8, 1, 2, 3, 1, 1, 9, 1, 2, 3, 4, 1, 1, 2, 10, 1, 2, 3, 4, 1, 1, 1, 2, 1, 11, 1, 2, 3, 4, 5, 1, 1, 1, 2, 2, 1, 12, 1, 2, 3, 4, 5, 1, 1, 1, 1, 2, 2, 3, 1, 1, 13, 1, 2, 3, 4, 5, 6, 1, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 14, 1, 2, 3, 4, 5, 6, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 1, 1, 1, 1, 2, 15, 1, 2, 3, 4, 5, 6, 7, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 1, 1, 1, 1, 1, 2, 1
Offset: 1
Examples
The irregular triangle begins (brackets separate partitions with equal number of parts m = 1, 2, 3,..., A003056(n)): n\k 1 2 3 4 5 6 7 8 9 10 ... 1: [1] 2: [2] 3: [3] [1] 4: [4] [1] 5: [5] [1, 2] 6: [6] [1, 2] [1] 7: [7] [1, 2, 3] [1] 8: [8] [1, 2, 3] [1, 1] 9: [9] [1, 2, 3, 4] [1, 1, 2] 10: [10] [1, 2, 3, 4] [1, 1, 1, 2] [1] ... n = 11: [11] [1, 2, 3, 4, 5] [1, 1, 1, 2, 2] [1], n = 12: [12] [1, 2, 3, 4, 5] [1, 1, 1, 1, 2, 2, 3] [1, 1], n = 13: [13] [1, 2, 3, 4, 5, 6] [1, 1, 1, 1, 2, 2, 2, 3] [1, 1, 1], n = 14: [14] [1, 2, 3, 4, 5, 6] [1, 1, 1, 1, 1, 2, 2, 2, 3, 3] [1, 1, 1, 1, 2], n = 15: [15] [1, 2, 3, 4, 5, 6, 7] [1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4] [1, 1, 1, 1, 1, 2] [1]. ---------------------------------------- The partition of n = 5 + 4 + 1 = 10 has base 1 and slope 2 (beta < sigma): o o o o o o o o o o The partition of n = 5 + 3 + 1 = 9 has base 1 and slope 1 (beta = sigma): o o o o o o o o o The partition of n = 5 + 3 + 2 = 10 has base 2 and slope 1 (beta > sigma): o o o o o o o o o o ------------------------------------------ The partitions of n = 6 with m = 1, 2, and 3, (3 = A003056(6)) distinct parts are: [6], [[5, 1], [4, 2]], [3, 2, 1], with base numbers in row n=6: [6] [1, 2] [1] and slope numbers in row n=6 of A277231: [1] [1, 1] [3].
References
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, pp. 389-391, 396, 595.
- G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 83-85.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 5th ed., Clarendon Press, Oxford, 2003, pp. 284-287.
- P. A. MacMahon, Combinatory Analysis, Vol. II, Chelsea Publishing Company, New York, 1960, pp. 21-23.
Links
- F. Franklin, Sur le développement du produit infini (1-x) (1-x^2) (1-x^3) ..., Comptes Rendus de l'Académie des Sciences, Paris, 92 (1881) 448-450.
Programs
-
Mathematica
Table[Function[w, Flatten@ Map[Function[k, Min /@ Select[w, Length@ # == k &]], Range@ Max@ Map[Length, w]]]@ Select[ DeleteCases[ IntegerPartitions@ n, w_ /; MemberQ[Differences@ w, 0]], Length@ # <= Floor[(Sqrt[1 + 8 n] - 1)/2] &], {n, 15}] // Flatten (* Michael De Vlieger, Oct 26 2016 *)
Formula
T(n, k) is the smallest part of the k-th partition of n into distinct parts. n >=1. k=1, 2, ..., A000009(n). Partitions appear in Abramowitz-Stegun order.
Comments