A366509
a(n) is the maximum number of dots on the slope of a Ferrers diagram of a partition of n into distinct parts.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 2, 2, 3, 4, 2, 3, 3, 4, 5, 3, 3, 4, 4, 5, 6, 4, 4, 4, 5, 5, 6, 7, 4, 5, 5, 5, 6, 6, 7, 8, 5, 5, 6, 6, 6, 7, 7, 8, 9, 6, 6, 6, 7, 7, 7, 8, 8, 9, 10, 7, 7, 7, 7, 8, 8, 8, 9, 9, 10, 11, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 11, 12, 8, 8, 9, 9, 9, 9, 10
Offset: 1
The Ferrers diagrams for the partitions of n = 7 into distinct parts are:
.
. (7) (6,1) (5,2) (4,3) (4,2,1)
. o o o o o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o
. o
.
The maximal slope (joining 2 dots) corresponds to the (4,3) partition.
For n = 11 there are two diagrams with maximal slope (joining 2 dots):
.
. o o o o o o o o o o o
. o o o o o o o o o
. o o
.
For n = 26 the maximal slope, corresponding to the partition (7,6,5,4,3,1), joins 5 dots:
.
. o o o o o o o
. /
. o o o o o o
. /
. o o o o o
. /
. o o o o
. /
. o o o
.
. o
.
A277230
Irregular triangular array T(n, k) giving in row n the base of the Ferrers diagram of the k-th partition of n into distinct parts. The partitions of n are taken in Abramowitz-Stegun order but with decreasing parts. T(n, k) is the smallest part of the k-th partition of n into distinct parts.
Original entry on oeis.org
1, 2, 3, 1, 4, 1, 5, 1, 2, 6, 1, 2, 1, 7, 1, 2, 3, 1, 8, 1, 2, 3, 1, 1, 9, 1, 2, 3, 4, 1, 1, 2, 10, 1, 2, 3, 4, 1, 1, 1, 2, 1, 11, 1, 2, 3, 4, 5, 1, 1, 1, 2, 2, 1, 12, 1, 2, 3, 4, 5, 1, 1, 1, 1, 2, 2, 3, 1, 1, 13, 1, 2, 3, 4, 5, 6, 1, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 14, 1, 2, 3, 4, 5, 6, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 1, 1, 1, 1, 2, 15, 1, 2, 3, 4, 5, 6, 7, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 1, 1, 1, 1, 1, 2, 1
Offset: 1
The irregular triangle begins (brackets separate partitions with equal number of parts m = 1, 2, 3,..., A003056(n)):
n\k 1 2 3 4 5 6 7 8 9 10 ...
1: [1]
2: [2]
3: [3] [1]
4: [4] [1]
5: [5] [1, 2]
6: [6] [1, 2] [1]
7: [7] [1, 2, 3] [1]
8: [8] [1, 2, 3] [1, 1]
9: [9] [1, 2, 3, 4] [1, 1, 2]
10: [10] [1, 2, 3, 4] [1, 1, 1, 2] [1]
...
n = 11: [11] [1, 2, 3, 4, 5] [1, 1, 1, 2, 2] [1],
n = 12: [12] [1, 2, 3, 4, 5] [1, 1, 1, 1, 2, 2, 3] [1, 1],
n = 13: [13] [1, 2, 3, 4, 5, 6] [1, 1, 1, 1, 2, 2, 2, 3] [1, 1, 1],
n = 14: [14] [1, 2, 3, 4, 5, 6] [1, 1, 1, 1, 1, 2, 2, 2, 3, 3] [1, 1, 1, 1, 2],
n = 15: [15] [1, 2, 3, 4, 5, 6, 7] [1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4] [1, 1, 1, 1, 1, 2] [1].
----------------------------------------
The partition of n = 5 + 4 + 1 = 10 has base 1 and slope 2 (beta < sigma):
o o o o o
o o o o
o
The partition of n = 5 + 3 + 1 = 9 has base 1 and slope 1 (beta = sigma):
o o o o o
o o o
o
The partition of n = 5 + 3 + 2 = 10 has base 2 and slope 1 (beta > sigma):
o o o o o
o o o
o o
------------------------------------------
The partitions of n = 6 with m = 1, 2, and 3, (3 = A003056(6)) distinct parts are:
[6], [[5, 1], [4, 2]], [3, 2, 1], with base numbers in row n=6: [6] [1, 2] [1]
and slope numbers in row n=6 of A277231:
[1] [1, 1] [3].
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, pp. 389-391, 396, 595.
- G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 83-85.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 5th ed., Clarendon Press, Oxford, 2003, pp. 284-287.
- P. A. MacMahon, Combinatory Analysis, Vol. II, Chelsea Publishing Company, New York, 1960, pp. 21-23.
-
Table[Function[w, Flatten@ Map[Function[k, Min /@ Select[w, Length@ # == k &]], Range@ Max@ Map[Length, w]]]@ Select[ DeleteCases[ IntegerPartitions@ n, w_ /; MemberQ[Differences@ w, 0]], Length@ # <= Floor[(Sqrt[1 + 8 n] - 1)/2] &], {n, 15}] // Flatten (* Michael De Vlieger, Oct 26 2016 *)
Showing 1-2 of 2 results.
Comments