cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277232 Numerators of the partial sums of the cubes of the expansion coefficients of 1/sqrt(1-x).

This page as a plain text file.
%I A277232 #30 Feb 16 2025 08:33:36
%S A277232 1,9,603,4949,2576763,20864151,1347632055,10860010029,44749069441659,
%T A277232 359788384157147,23124997294306677,185685617347012755,
%U A277232 95380005326947177879,765237422887515344907,49101291379356533433423,393721549706169405868509,12928613856208967961607217787
%N A277232 Numerators of the partial sums of the cubes of the expansion coefficients of 1/sqrt(1-x).
%C A277232 The denominators seem to coincide with A241756.
%C A277232 These are the partial sums of F. Morley's series Sum_{k>=0} (risefac(m,k)/k!)^3 for m=1/2, where risefac(x,k) = Product_{j=0..k-1} (x+j), and risefac(x,0) = 1. See the Hardy reference, pp. 104, 111.
%C A277232 The Morley formula gives the value of this series for |m| < 2/3 as Gamma(1-3*m/2)/(Gamma(1-m/2)^3)*cos(Pi*m/2). For the present case m=1/2 this value is hypergeometric([1/2,1/2,1/2],[1,1],1) = Pi/Gamma(3/4)^4 given in A091670.
%D A277232 G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, p. 104.
%H A277232 Seiichi Manyama, <a href="/A277232/b277232.txt">Table of n, a(n) for n = 0..555</a>
%H A277232 F. Morley, <a href="https://doi.org/10.1112/plms/s1-34.1.397">On the Series 1 + (p/1)^3 + {p*(p+1)/1.2}^3 + ... </a>, Proc. London Math. Soc. 34 (1902) 397-402, eq. (5), p. 401.
%H A277232 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MorleysFormula.html">Morley's Formula</a>.
%F A277232 a(n) = numerator(r(n)) with the rational r(n) = Sum_{k=0..n} (risefac(1/2,k)/k!)^3 = Sum_{k=0..n} (-1)^k*(binomial(-1/2,k))^3 = Sum_{k=0..n} ((2*k-1)!!/(2*k)!!)^3. The rising factorial has been defined in a comment above. The double factorials are given in A001147 and A000165 with (-1)!! := 1.
%e A277232 The rationals r(n) begin: 1, 9/8, 603/512, 4949/4096, 2576763/2097152, 20864151/16777216, 1347632055/1073741824, ...
%e A277232 The limit is given in A091670, approximately 1.3932039296856768591...
%Y A277232 Cf. A001147, A000165, A091670, A241756.
%K A277232 nonn,frac,easy
%O A277232 0,2
%A A277232 _Wolfdieter Lang_, Nov 11 2016