cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277233 Numerators of the partial sums of the squares of the expansion coefficients of 1/sqrt(1-x). Also the numerators of the Landau constants.

This page as a plain text file.
%I A277233 #44 Sep 30 2019 04:50:22
%S A277233 1,5,89,381,25609,106405,1755841,7207405,1886504905,7693763645,
%T A277233 125233642041,508710104205,33014475398641,133748096600189,
%U A277233 2165115508033649,8754452051708621,9054883309760265929,36559890613417481741,590105629859261338481,2379942639329101454549
%N A277233 Numerators of the partial sums of the squares of the expansion coefficients of 1/sqrt(1-x). Also the numerators of the Landau constants.
%C A277233 This is the instance m=1/2 of the partial sums r(m,n) = Sum_{k=0..n} (risefac(m,k)/ k!)^2, where risefac(x,k) = Product_{j=0..k-1} (x+j), and risefac(x,0) = 1.
%C A277233 The limit n -> oo does not exist. It would be hypergeometric([1/2,1/2],[1],z -> 1), which diverges.
%C A277233 The partial sums of the cubes converge for |m| < 2/3. See Morley's series under A277232 (for m=1/2).
%C A277233 a(n)/A056982(n) are the Landau constants. These constants are defined as G(n) = Sum_{j=0..n} g(j)^2, where g(n) = (2*n)!/(2^n*n!)^2 = A001790(n)/A046161(n). - _Peter Luschny_, Sep 27 2019
%H A277233 Seiichi Manyama, <a href="/A277233/b277233.txt">Table of n, a(n) for n = 0..831</a>
%H A277233 Edmund Landau, <a href="https://babel.hathitrust.org/cgi/pt?id=uc1.a0002839165&amp;view=1up&amp;seq=56">Abschätzung der Koeffzientensumme einer Potenzreihe</a>, Arch. Math. Phys. 21 (1913), 42-50. [Accessible in the USA through the <a href="https://www.hathitrust.org/accessibility">Hathi Trust Digital Library</a>.]
%H A277233 Edmund Landau, <a href="https://babel.hathitrust.org/cgi/pt?id=uc1.a0002839165&amp;view=1up&amp;seq=264">Abschätzung der Koeffzientensumme einer Potenzreihe (Zweite Abhandlung)</a>, Arch. Math. Phys. 21 (1913), 250-255.  [Accessible in the USA through the <a href="https://www.hathitrust.org/accessibility">Hathi Trust Digital Library</a>.]
%H A277233 Cristinel Mortici, <a href="http://dx.doi.org/10.1090/S0025-5718-2010-02428-7">Sharp bounds of the Landau constants</a>, Math. Comp. 80 (2011), pp. 1011-1018.
%H A277233 G. N. Watson, <a href="https://doi.org/10.1093/qmath/os-1.1.310">The constants of Landau and Lebesgue</a>, Quart. J. Math. Oxford Ser. 1:2 (1930), pp. 310-318.
%F A277233 a(n) = numerator(r(n)), with the fractional
%F A277233 r(n) = Sum_{k=0..n} (risefac(1/2,k)/k!)^2;
%F A277233 r(n) = Sum_{k=0..n} (binomial(-1/2,k))^2;
%F A277233 r(n) = Sum_{k=0..n} ((2*k-1)!!/(2*k)!!)^2.
%F A277233 The rising factorial has been defined in a comment above. The double factorials are given in A001147 and A000165 with (-1)!! := 1.
%F A277233 r(n) ~ (log(n+3/4) + EulerGamma + 4*log(2))/Pi. - _Peter Luschny_, Sep 27 2019
%F A277233 Rational generating function: (2*K(x))/(Pi*(1-x)) where K is the complete elliptic integral of the first kind. - _Peter Luschny_, Sep 28 2019
%F A277233 a(n) = Sum_{k=0..n}(A001790(k)*(2^(A005187(n) - A005187(k))))^2. - _Peter Luschny_, Sep 30 2019
%e A277233 The rationals r(n) begin: 1, 5/4, 89/64, 381/256, 25609/16384, 106405/65536, 1755841/1048576, 7207405/4194304, 1886504905/1073741824, 7693763645/4294967296, ...
%p A277233 a := n -> numer(add(binomial(-1/2, j)^2, j=0..n));
%p A277233 seq(a(n), n=0..19); # _Peter Luschny_, Sep 26 2019
%p A277233 # Alternatively:
%p A277233 G := proc(x) hypergeom([1/2,1/2], [1], x)/(1-x) end: ser := series(G(x), x, 20):
%p A277233 [seq(coeff(ser,x,n), n=0..19)]: numer(%); # _Peter Luschny_, Sep 28 2019
%t A277233 Accumulate[CoefficientList[Series[1/Sqrt[1-x],{x,0,20}],x]^2]//Numerator (* _Harvey P. Dale_, Feb 10 2019 *)
%t A277233 G[x_] := (2 EllipticK[x])/(Pi (1 - x));
%t A277233 CoefficientList[Series[G[x], {x, 0, 19}], x] // Numerator (* _Peter Luschny_, Sep 28 2019 *)
%o A277233 (SageMath)
%o A277233 def A277233(n):
%o A277233     return sum((A001790(k)*(2^(A005187(n) - A005187(k))))^2 for k in (0..n))
%o A277233 print([A277233(n) for n in (0..19)]) # _Peter Luschny_, Sep 30 2019
%Y A277233 Denominators are A056982.
%Y A277233 Cf. A001803/A046161, A277232/A241756, A001790/A046161, A005187.
%K A277233 nonn,frac,easy
%O A277233 0,2
%A A277233 _Wolfdieter Lang_, Nov 12 2016