cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277247 a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)^2.

Original entry on oeis.org

1, 1, 5, 10, 53, 126, 662, 1716, 8885, 24310, 124130, 352716, 1778966, 5200300, 25947612, 77558760, 383358645, 1166803110, 5719519850, 17672631900, 85990654178, 269128937220, 1300866635172, 4116715363800, 19780031677718, 63205303218876, 302045506654052
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 06 2016

Keywords

Comments

Interleaves A036910 and A002458.

Crossrefs

Programs

  • Maple
    A277247 := proc(n)
        add(binomial(n,k)^2,k=0..floor(n/2)) ;
    end proc:
    seq(A277247(n),n=0..50) ; # R. J. Mathar, Jan 11 2024
  • Mathematica
    Table[(Binomial[2 n, n] + (Binomial[n, n/2] Cos[Pi n/2])^2)/2, {n, 0, 30}]
    CoefficientList[Series[(1/Sqrt[1-4x]+(2EllipticK[16 x^2])/Pi)/2, {x, 0, 20}], x] (* Benedict W. J. Irwin, Oct 19 2016 *)

Formula

a(n) = (binomial(2*n, n) + (binomial(n, n/2)*cos(Pi*n/2))^2)/2.
D-finite with recurrence: 2*(2*n+1)*(4*n^2+15*n+13)*(16*(n+1)^2*a(n) - (n+2)^2*a(n+2)) = (n+2)*(4*n^2+7*n+2)*(16*(n+2)^2*a(n+1) - (n+3)^2*a(n+3)).
G.f.: (1/sqrt(1 - 4*x) + 2*K(4*x)/Pi)/2, where K is the complete elliptic integral of the first kind with modulus 4*x. - Benedict W. J. Irwin, Oct 19 2016
D-finite with recurrence n^2*(n-1)*a(n) -2*(3*n-4)*(n-1)^2*a(n-1) +4*(-19*n^2+64*n-56)*a(n-2) +16*(4*n^3-11*n^2-16*n+49)*a(n-3) -64*(4*n-15)*(n-3)^2*a(n-4) +256*(2*n-9)*(n-4)^2*a(n-5)=0. - R. J. Mathar, Jan 11 2024