cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277248 Number of planar walks starting at (1,1), ending at (3n,0), remaining in the first quadrant and using steps (-1,2) and (2,-1).

This page as a plain text file.
%I A277248 #30 Dec 04 2016 12:32:17
%S A277248 1,2,6,24,108,528,2724,14616,80760,456552,2628504,15360216,90879096,
%T A277248 543336912,3277586136,19924733088,121943223576,750756116376,
%U A277248 4646484480552,28892787031008,180420486241776,1130930538186360,7113550964713848,44885329202906448
%N A277248 Number of planar walks starting at (1,1), ending at (3n,0), remaining in the first quadrant and using steps (-1,2) and (2,-1).
%H A277248 Alois P. Heinz, <a href="/A277248/b277248.txt">Table of n, a(n) for n = 1..1000</a>
%H A277248 M. Bousquet-Mélou, M. Petkovsek, <a href="http://dx.doi.org/10.1016/S0304-3975(03)00219-6">Walks confined in a quadrant are not always D-finite</a>, Theoretical Computer Science, 307(2003): 257-276.
%H A277248 Ira M. Gessel, <a href="http://dx.doi.org/10.1016/0378-3758(86)90009-1">A probabilistic method for lattice path enumeration</a>, Journal of statistical planning and inference, 14 (1986), 49-58.
%F A277248 a(n) ~ c * (27/4)^n / n^(3/2), where c = 0.06045583689606517807688682344735167414726208387456561322459238109992522838... . - _Vaclav Kotesovec_, Oct 07 2016
%p A277248 b:= proc(l) option remember; `if`(l=[1$2], 1, add((p->
%p A277248       `if`(p[1]<0, 0, b(p)))(sort((l-x))), x=[[-1, 2], [2, -1]]))
%p A277248     end:
%p A277248 a:= n-> b([0,3*n]):
%p A277248 seq(a(n), n=1..30);  # _Alois P. Heinz_, Oct 06 2016
%t A277248 b[l_List] := b[l] = If[l == {1, 1}, 1, Sum[Function[p, If[p[[1]]<0, 0, b[p]]][Sort[l-x]], {x, {{-1, 2}, {2, -1}}}]]; a[n_] := b[{0, 3n}]; Table[a[n], {n, 1, 30}] (* _Jean-François Alcover_, Dec 04 2016 after _Alois P. Heinz_ *)
%Y A277248 Cf. A048116.
%K A277248 nonn,walk
%O A277248 1,2
%A A277248 _Feng Jishe_, Oct 06 2016
%E A277248 More terms from _Alois P. Heinz_, Oct 06 2016