A277269 Hypotenuses of Pythagorean triples, generated by a variation of Euclid's formula.
5, 10, 13, 17, 10, 25, 26, 29, 34, 41, 37, 20, 15, 26, 61, 50, 53, 58, 65, 74, 85, 65, 34, 73, 20, 89, 50, 113, 82, 85, 30, 97, 106, 39, 130, 145, 101, 52, 109, 58, 25, 68, 149, 82, 181, 122, 125, 130, 137, 146, 157, 170, 185, 202, 221, 145, 74, 51, 40, 169, 30, 75, 122, 265, 170, 173, 178, 185, 194, 205, 218, 233, 250, 269, 290, 313, 197, 100, 205, 106, 221, 116, 35, 130, 277, 148, 317, 170, 365, 226, 229
Offset: 1
Examples
Triangle with each row r going from P(r+1,1) to P(r+1,r): P(2,1)=5; P(3,1)=10, P(3,2)=13; P(4,1)=17, P(4,2)=2*P(2,1)=10, P(4,3)=25; P(5,1)=26, P(5,2)=29, P(5,3)=34, P(5,4)=41; P(6,1)=37, P(6,2)=2*P(3,1)=20, P(6,3)=3*P(2,1)=15, P(6,4)=2*P(3,2)=26, P(6,5)=61;
Links
- Juhani Heino, Faux art showing the motivation of this.
- Wikipedia, Pythagorean Triple.
Crossrefs
Programs
-
PARI
p(x,y) = x^2 + y^2 out="" for (row = 1, 15, for (col = 1, row, s=gcd(row+1, col); out = Str(out, s * p((row+1)/s, col/s),", ") )) print(out);
Comments