cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277271 Second largest coefficient among the polynomials in row n of the triangle of q-binomial coefficients.

Original entry on oeis.org

1, 1, 2, 4, 7, 11, 19, 30, 55, 90, 166, 285, 519, 902, 1656, 2929, 5424, 9673, 18012, 32467, 60981, 110599, 208445, 381301, 722552, 1327869, 2522994, 4665786, 8902311, 16524759, 31594853, 58935171, 113038371, 211499060, 406350261, 763246536, 1470080699
Offset: 4

Views

Author

Vladimir Reshetnikov, Oct 07 2016

Keywords

Comments

q-binomial coefficients are polynomials in q with integer coefficients.

Examples

			Row 5 of the triangle of q-binomial coefficients is [1, 1 + q + q^2 + q^3 + q^4, 1 + q + 2*q^2 + 2*q^3 + 2*q^4 + q^5 + q^6, 1 + q + 2*q^2 + 2*q^3 + 2*q^4 + q^5 + q^6, 1 + q + q^2 + q^3 + q^4, 1]. The largest coefficient is 2, and the second largest coefficient is 1. Hence A277218(5) = 2 and a(5) = 1.
		

Crossrefs

Cf. A002838, A022166, A029895, A055606, A076822, A277218 (largest coefficients).

Programs

  • Mathematica
    Table[(Union @@ Table[CoefficientList[FunctionExpand[QBinomial[n, k, q]], q], {k, 0, n}])[[-2]], {n, 4, 40}]