cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277274 Positive integers n such that 3^n == 11 (mod n).

This page as a plain text file.
%I A277274 #30 Oct 12 2016 22:58:31
%S A277274 1,2,1162,1692934,3851999,274422823,14543645261,492230729674,
%T A277274 773046873382,13010754158393,31446154470014,583396812890467,
%U A277274 598371102650063
%N A277274 Positive integers n such that 3^n == 11 (mod n).
%C A277274 No other terms below 10^15. Some larger terms: 38726095838775708310162, 2682806839696008709567739369. - _Max Alekseyev_, Oct 12 2016
%e A277274 3 == 11 mod 1, so 1 is a term.
%e A277274 9 == 11 mod 2, so 2 is a term.
%t A277274 k = 3; lst = {1, 2}; While[k < 12000000001, If[ PowerMod[3, k, k] == 11, AppendTo[lst, k]]; k++]; lst (* _Robert G. Wilson v_, Oct 08 2016 *)
%Y A277274 Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), A277288 (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), A277126 (k=7), this sequence (k=11).
%K A277274 nonn,more
%O A277274 1,2
%A A277274 _Seiichi Manyama_, Oct 08 2016
%E A277274 a(7)-a(13) from _Max Alekseyev_, Oct 12 2016