cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277277 Number of overpal-free binary words of length n.

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 20, 28, 36, 44, 56, 72, 92, 116, 148, 188, 240, 304, 388, 492, 628, 796, 1016, 1288, 1644, 2084, 2660, 3372, 4304, 5456, 6964, 8828, 11268, 14284, 18232, 23112, 29500, 37396, 47732, 60508, 77232, 97904, 124964, 158412, 202196, 256316, 327160, 414728, 529356, 671044, 856516
Offset: 0

Views

Author

Jeffrey Shallit, Oct 08 2016

Keywords

Comments

An "overpal" is a word of the form a x a x^R a, where a is a single letter, x is a (possibly empty) word, and x^R denotes the reverse of the word x. To be "overpal-free" is to contain no factor (contiguous block) that is an overpal.
A binary word avoids overpals if and only if it avoids aaa, ababa, and abbabba as factors (Narad Rampersad). This gives the proof of Barker's formulas below. - Jeffrey Shallit, Oct 09 2016 and Colin Barker, Oct 10 2016

Examples

			For n = 4, the 14 words are 00100, 00101, 00110, 01001, and their complements and reversals.
		

Crossrefs

Cf. A007777.

Programs

  • PARI
    Vec((1+2*x+3*x^2+4*x^3+5*x^4+6*x^5+6*x^6+8*x^7+6*x^8+2*x^9)/(1-x^2-x^4) + O(x^50)) \\ Colin Barker, Oct 10 2016

Formula

From Colin Barker, Oct 08 2016: (Start)
a(n) = a(n-2)+a(n-4) for n>9.
G.f.: (1+2*x+3*x^2+4*x^3+5*x^4+6*x^5+6*x^6+8*x^7+6*x^8+2*x^9) / (1-x^2-x^4).
(End)