A277277 Number of overpal-free binary words of length n.
1, 2, 4, 6, 10, 14, 20, 28, 36, 44, 56, 72, 92, 116, 148, 188, 240, 304, 388, 492, 628, 796, 1016, 1288, 1644, 2084, 2660, 3372, 4304, 5456, 6964, 8828, 11268, 14284, 18232, 23112, 29500, 37396, 47732, 60508, 77232, 97904, 124964, 158412, 202196, 256316, 327160, 414728, 529356, 671044, 856516
Offset: 0
Examples
For n = 4, the 14 words are 00100, 00101, 00110, 01001, and their complements and reversals.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Aayush Rajasekaran, Narad Rampersad, Jeffrey Shallit, Overpals, Underlaps, and Underpals, In: Brlek S., Dolce F., Reutenauer C., Vandomme É. (eds) Combinatorics on Words, WORDS 2017, Lecture Notes in Computer Science, vol 10432.
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,1).
Crossrefs
Cf. A007777.
Programs
-
PARI
Vec((1+2*x+3*x^2+4*x^3+5*x^4+6*x^5+6*x^6+8*x^7+6*x^8+2*x^9)/(1-x^2-x^4) + O(x^50)) \\ Colin Barker, Oct 10 2016
Formula
From Colin Barker, Oct 08 2016: (Start)
a(n) = a(n-2)+a(n-4) for n>9.
G.f.: (1+2*x+3*x^2+4*x^3+5*x^4+6*x^5+6*x^6+8*x^7+6*x^8+2*x^9) / (1-x^2-x^4).
(End)
Comments