This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A277280 #23 Feb 16 2025 08:33:36 %S A277280 1,2,4,8,16,120,720,3360,13440,48384,302400,2217600,13305600,69189120, %T A277280 322882560,2421619200,19372953600,131736084480,790416506880, %U A277280 4290832465920,40226554368000,337903056691200,2477955749068800,16283709208166400,113985964457164800 %N A277280 Maximal coefficient in Hermite polynomial of order n. %H A277280 Vaclav Kotesovec, <a href="/A277280/b277280.txt">Table of n, a(n) for n = 0..710</a> %H A277280 Vaclav Kotesovec, <a href="/A277280/a277280.jpg">Plot of a(n+1)/(a(n)*sqrt(n)) for n = 1..10000</a> %H A277280 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HermitePolynomial.html">Hermite Polynomial</a>. %H A277280 Wikipedia, <a href="http://en.wikipedia.org/wiki/Hermite_polynomials">Hermite polynomials</a>. %e A277280 For n = 5, H_5(x) = 32*x^5 - 160*x^3 + 120*x. The maximal coefficient is 120 (we take signs into account, so -160 < 120), hence a(5) = 120. %t A277280 Table[Max@CoefficientList[HermiteH[n, x], x], {n, 0, 25}] %o A277280 (PARI) a(n) = vecmax(Vec(polhermite(n))); \\ _Michel Marcus_, Oct 09 2016 %o A277280 (Python) %o A277280 from sympy import hermite, Poly %o A277280 def a(n): return max(Poly(hermite(n, x), x).coeffs()) # _Indranil Ghosh_, May 26 2017 %Y A277280 Cf. A059343, A277281 (ignoring signs). %K A277280 nonn %O A277280 0,2 %A A277280 _Vladimir Reshetnikov_, Oct 08 2016